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In wireless sensor networks (WSNs), in-network data aggregation is
an efficient way to reduce energy consumption. However, most of the
existing data aggregation scheduling methods try to aggregate data from
all the nodes in each time-instance, which is neither energy efficient
nor practical because of the link unreliability and spatial and temporal
data correlation. In this paper, we propose a new scheme allowing the
data aggregation with the data loss. In our scheme, we selectively let
some nodes sample and aggregate data, then transmit it to the sink. Two
different cases are studied. Firstly, this paper assumes that the links are
reliable and the error between the data of all nodes and that of sampled
nodes is bounded. The detailed analysis is given on the error bound when
the confidence level is given in advance. Secondly, this paper assumes
that the links are unreliable with a certain probability. Then we obtain
that the error is still bounded under a given confidence level when the
probability of link unreliability is not too high or the success probability of
retransmission is high enough. We also study how to assign the confidence
level among the parent nodes such that each parent node can calculate
the minimum number of sampling leaf nodes based on the corresponding
confidence level. Through analyzing, we show that it can surely save
energy to adopt our method when the link is reliable. When the link is
not reliable, the energy still can be saved if the success probability of
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retransmission is high enough. The performance evaluation by simulation
is discussed in the end of this paper.The results of the simulation indicate
that it can save energy and does not effect the data accuracy to adopt our
scheme if a certain bounded error is acceptable. Since the data redundancy
often happens in WSNs, it is feasible to allow certain data error.

Keywords: Lossy Data Aggregation; Energy Efficiency; Data Sampling; Data
Loss; Wireless Sensor Networks

I INTRODUCTION

Wireless sensor networks (WSNs) are resource constrained: limited energy,
bandwidth, memory and so on. The energy consumption caused by the data
processing by a sensor node is usually much less than that caused by the com-
munication [1]. Thus, it is a common way to save the energy consumption
by reducing the communication. An effective method is to apply data aggre-
gation [2] or compression before transmitting data. A number of novel data
aggregation methods have been proposed recently with various optimization
goals, such as reducing the energy consumption [2, 3], and the delay of data
aggregation [4,5].

Most of data aggregation schemes assume that all the sampled data can
be successfully transmitted to the sink [6]. In practice, wireless links are
not always reliable and not all of the nodes can work normally all through.
Furthermore, the sample rate is always limited by the bandwidth. Therefore,
some packets are inevitably lost at some unpredictable time slots on some
links. When a parent node collects data from others, some or all sensed data
of a node may miss at some time slots. Unfortunately the final data received
by the parent node is fragmentary. Furthermore, typical data aggregation
schemes would let the parent nodes sample data at full time slots and collect
the data from their children.

Although there are lots of work focusing on data aggregation [6,7], a few
of them synchronously consider the packet loss and sampling data loss, which
are ineluctable in WSNs. Meanwhile the energy cost on data sampling and
transmitting can be reduced when proper strategies are designed.

Another unavoidable question is whether a much precise information
obtained from the practical surrounding by WSNs is worthy of the exiguous
recourse in WSNs when the less precise information is acceptable. In many
applications, the data sampling is better if the sampling period is longer. The
longer sample period and lower duty ratio can prolong the network life time
and save energy since it is important to save energy when the batteries of the
nodes are hard to be recharged. In this sense, it is advisable to collect the data
of a part of nodes at a part of periods.

In this paper, we introduce a new method into the data aggregation. It need
only collect the information of a part of nodes and a part of time slots therefore
it reduces the sampling time and energy of sampling and transmitting data.
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In our method, we decompose the data aggregation tree into two kinds of
basic components:serial connection (SC) andcollateral connection (CC).
The data aggregation tree is constructed by selecting a connected dominating
set (CDS) [8]. We divide the whole network life into a series of length-
equivalent periods, each of which contains several time slots. Whether a sensor
node samples data from environment in the time slots or not is decided by our
data aggregation method. Based on the two basic components, we respectively
analyze the necessary number of nodes or time slots to sample data when
the error℘ between the valueD containing the sensed information and the
corresponding valueD′ of the real world is given. we design algorithms to
insure that each parent node in a data aggregation tree or subtree can decide the
number of leaf nodes who need not sample data and that each node can know
the number of time slots in which it need not sample data. Our algorithms
guarantee that the error℘ is less than an expected valueE′ with the least
probability 1− γ .

The rest of the paper is organized as follows. Section II outlines the relative
work of the data aggregation and CDS. Section III presents the assumption
and formulates the problem of loss data aggregation in the network. Our lossy
data aggregation scheme is presented and analyzed in Section IV. We also
give the simulation to evaluate the performance of our schemes in Section V.
Section VI concludes the whole paper.

II BACKGROUND

A Data Aggregation
In WSNs, data aggregation has been well studied in recent years [6], [4,9–11].
A main purpose of in-network aggregation is to decrease the transmission
power consumption [2]. Instead of transmitting raw data to sink, it can save
much energy and decrease network interference to compute and transmit par-
tially aggregated data in network. [12] proposed a heuristic algorithm for
constructing data aggregation trees that minimize total energy cost under the
latency bound and compute the worst case delay for a sensor node to aggre-
gate the data from all its child nodes in the aggregation tree based on an
analytic model for IEEE 802.15.4 standard. In order to decrease the time
latency more, [5] developed a distributed collision-free schedule with the
latency bound of 24D + 6� + 16, whereD is the network diameter and� is
the maximum node degree among the network. The tradeoff between energy
consumption and time latency was considered in [13]. To balance the trade-
off, [14] imposed a decision-making problem in aggregation, and proposed
a semi-Markov decision process model to analyze the decision problem and
determine the optimal policies at nodes with local information.

Because the low bandwidth and energy limitations are inherent to sensor
networks, an adaptive application-independent data aggregation (AIDA)
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component, fitted into the sensor network communication stack, is devel-
oped in [15] to maximize the utilization of the channel while the energy is
saved. In fact, the channel states are dramatically affected by the radio states
(transmitting, receiving, listening, sleeping and being idle) of a transmitter
and the environment. Based on TDMA MAC layer protocol, Wu, Lietc sched-
uled the sensor nodes at different radio states [16]. The energy consumed by
their scheduling for homogeneous network is at most twice of the optimum

and for heterogeneous network is at most�( log Rmax
Rmin

) times of the optimum.

They also proposed data gathering scheme to grantee the energy consumption
and the network throughput within a constant factor of the optimum. How-
ever, it is costly to efficiently use TDMA model in WSNs since it consumes
much resource to implement synchronization protocol in the network. So the
collision and interference are unavoidable in WSNs [17]. [18] designed a
collision-free scheduling when data collection was implemented.

B CDS
The CDS problem has been widely studied in Unit Disk Graphs (UDG) [19].
Before constructing CDS, many existing algorithms firstly found a Maximal
Independent Set (MIS)I based on a given network and then connected all
nodes inI to form a CDS [20]. In fact, the communication ranges of dif-
ferent sensor nodes differ from each other not like UDG, which results in
the symmetric communication links in multihop wireless networks. [19] pre-
sented two algorithms having constant performance ratios for its size and
diameter of the constructed CDS. [20] solved the link asymmetric problem
by constructing a strongly CDS (SCDS) and presented a polynomial-time
(3H(n − 1) − 1)-approximation algorithm for minimum SCDS, whereH is
the harmonic function. In order to save energy, [21] introduced a notion of an
extended dominating set (EDS) where each node in an ad hoc network is cov-
ered by either a dominating neighbor or several 2-hop dominating neighbors.
It also gave the heuristic solutions to the ECDS/EWCDS based on Guha and
Khuller’s MCDS.

In ad hoc or sensor network, the node and edge are weighted, such as
different edges have different traffic or consume different energy on com-
munication, which results in different interference range. [22] presented a
polynomial-time algorithm approximating the minimum weight edge domi-
nating set problem within a factor of 2. Instead of minimizing the backbone
size, [7] proposed an efficient distributed method to construct a weighted
backbone with low cost. The total cost of the constructed backbone is within
a small constant factor of the optimum for homogeneous networks. The total
number of messages of our method isO(n) when the geometry information
of each wireless node is known and the total number of messages isO(m)
otherwise for a network ofn devices andm communication links.
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III PRELIMINARY

A Network Model
We consider a network consisting ofn sensor nodes, which are randomly and
uniformly deployed in aC × C area. We denote a node asNi, i = 1,· · · , n,
which compose a node setV = {Ni|i = 1,· · · , n}. Every node has a trans-
mission ranger such that two nodesNi andNj can communicate directly if
||Ni − Nj|| ≤ r and there is no interference. The transmission ranger of each
node is properly set to guarantee the network connected [23]. We construct
a data aggregation tree by adopting an existing algorithm of selecting a CDS
S, S ⊂ V . Wan etc presented a distributed algorithm that has an approx-
imation factor of at most 8,O(n) time complexity andO(nlogn) message
complexity [24]. Then each nodeNi (Ni /∈ S) can find a nodeNj (Nj ∈ S)
and connect with it. All nodes inNj ∈ S can connect together and send their
aggregated data to the sink by multihop fashion. We call the nodes inS as
parent nodes and the nodes not inS as leaf nodes. All nodes send their data
to their parent nodes and the parents send their data the sink by relay nodes.
Since those nodes not inS connect to those inS, the sink has no node without
leaves.

B Data Aggregation Scheme
In WSNs, the primary task is to collect and transmit data to the destination.
Meanwhile the network often works in the duty cycle style in order to prolong
the network lifetime as shown in Figure 1. A node keeps itself “active” in work
time tw and “sleep” in sleep timets. Furthermore, the work timetw is equally
divided intoK time slots. All nodes run the same duty cycles and sample data
in the synchronization way.

We denote the life time of the network works byLT and assume that
LT = L × T , whereL is a positive natural number andT is the period. At
pth (p = 1,· · · , K) time slot Sp of qth (q = 1,· · · , L) period Tq, a node
Ni samples a data from the surrounding. The data is denoted asD(p, q, i)
so we can obtain a data seriesD(Sp, q, i) (p = 1,· · · , K) of the nodeNi at
qth periodTq. We suppose that the data sequenceD(p, q, i) (p = 1,· · · , K)
obey some kind of distributionN (t) relative to timet. For convenience, we
denote the sampled or received data asD(p, q, i) and the aggregated data
on nodeNi asDf (p, q, i) according to a kind of aggregation functionf, i.e.

FIGURE 1
Duty cycle
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A data aggregation treeDTk A layer of DTk

FIGURE 2
A data aggregation treeDTk . The hollow nodes are leaves.

Df (Sp, Tq, i) = f(D(Sp, Tq,S )), whereS ⊂ V is a subset containing nodes
in the aggregation tree parented atNi. f can mean the calculation Max, Min,
Average and so on. In brief, we useDf instead ofDf (Sp, Tq, k).

In this paper, we adopt the followingdata aggregation algorithm: f. Each
nodeNi obtainski (ki ≤ K) data after sampling data at time slottw in T . And
Ni aggregates theki data into one. IfNi /∈ S, Ni sends its aggregated data to
its parent. IfNi ∈ S, Ni waits till it receives certain amount of data from some
nodes. ThenNi aggregates its data and that of its leaf into one data, which
is transmitted to the sink by multihop fashion. When the leafNi transmits its
own aggregated data to the sink through other parent nodesNj, Nj aggregate
their data with theNi’s data.

Suppose that there is a routing protocol, which constructs afixed routing
to the sink for each node in the network.

We can use theaggregation tree DTk to describe the process of data aggre-
gation and transmission as shown in Figure 2(a). Theaggregation tree DTk

denotes a tree rooted at the nodeNk and the size ofDTk is denoted as|DTk|,
which is known by the parentNk in our functionf. At a periodTq, Nk also
knows the number of nodes, which gather data from the physical world.

IV SYNCHRONOUS SAMPLING

In this section, all nodes sample data synchronously. We adopt two ways to
reduce time slots and the number of nodes needing to transmit data. One
way iscontrollable data aggregation while the other isuncontrollable data
aggregation.

In the following context, we suppose that the dataD(p, q, i), directly gath-
ered from the physical world, obeys thenormal distribution N(µ,σ 2), where
u is the expectation andσ is the variance. AndD(p, q, i) andD(p, q, j) are
independent from each other wheni �= j.
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A Controllable Data Aggregation
When the links and the nodes are reliable and the interference among the
network can be avoided by a precisely designed schedule, we can assume
that there is no data loss occurring. Under the case, the sink can receive the
aggregated dataD(p, q, i) (p = 1,· · · , K andi = 1,· · · , n) from all nodes at
the periodTq without losing any sampled data. We can theoretically analyze
the least numberm (m ≥ n) of nodes needed to retransmit their data to the
sink when we guaranteeP(|E−E′| < ℘) = 1−γ , where℘ is a small positive
value. So we can design an algorithm to selectm nodes to transmit their data
to the sink through the relay nodes.

There are two cases. The first is that the sink only collects the data from
m nodes when thesem nodes sample data in all time slots. The second is that
the sink also collects the data ofm out of n nodes but each ofm nodes only
sample data in part of time slots.

When all nodes sample and aggregate data at all time slots, the sink can
finally obtain an aggregated dataDn

f . We considerDn
f as a reference. When the

sink randomly and uniformly selectsm out of n nodes, we denote the value
of the aggregated data at the sink asDm

f .

Theorem 1. When there are m (m < n) nodes, randomly chosen, sampling
and aggregating data and each of m nodes gathers data at all time slots, we

have P{|Dm
f − Dn

f | < ℘} = 1 − γ , where ℘ =
S · tγ

2 (m−1)
√

m
, S is a standard

deviation, 0 ≤ ℘ and 0 ≤ γ ≤ 1.

Proof. Since there are totallyn nodes in the network, the average valueDn
f

of their sampled dataD(p, q, i) is Dn
f = 1

n
∑n

i=1 D(Sp, Tq, i) at the period

Tq, whereD(Sp, Tq, i) = 1
K

∑K
p=1 D(p, Tq, i). According tothe law of large

numbers, we can obtain the following equation:

P(|Dn
f − µ| < ε) ≥ 1 − σ 2

n · ε2

whereε > 0 is small positive number. WSN is a kind of large-scale network,
we can assume thatn is large enough to makeDn

f = µ with high probability.
When there are onlym nodes, which sample, aggregate and send the data

to the sink, the average valueDm
f of their sampled dataD(p, q, i) is Dm

f =
1
m

∑m
i=1 D(Sp, Tq, i) at the periodTq. Notice that them nodes are randomly

chosen. Then the error betweenDm
f and the expectationµ of the data in the

physical world can be obtained from the following equation:

P{|Dm
f − µ

σ

√
m| < c} = 1 − γ (1)
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wherec > 0 and 1− γ is a confidence level. The varianceσ of the data in
the physical world is usually unknown. But the sink can estimate the variance
based on the current data according to the following equation.

S =
√√√√ 1

m − 1

m∑
i=1

(D(Sp, Tq, i) − Dm
f )2 (2)

Based on Equation (2), we can obtain following equation according to
Equation (1).

P{|Dm
f − µ

S
√

m| < c} = 1 − γ

Since
Dm

f − µ

S
√

m obeyst(m −1) distribution1, we haveP{|t| < c} = 1−γ ,

i.e.P{|t| ≥ c} = 1− P{|t| < c} = γ . Therefore we have the following equation:

P{|Dm
f − µ| < ℘} = 1 − γ (3)

where℘ = S · c√
m

andc = tγ
2

(m − 1). That finishes the proof.

The parameters℘ andγ are previously set at the sink. The above theorem
means that the sink can only receivem nodes’data if the difference℘ with the
confidence level 1−γ is acceptable. Son−m nodes can stop gathering data and
save energy. Notice that then − m nodes may still afford the communication
task. We denote the parameters℘k andγk for an arbitrary parent nodeNk.
WhenNk selects itsmk (mk ≤ m) leaf nodes to sample and transmit data,

mk = m|DTk|
n with probability. According to Equation (3), we can generalize

the result in Theorem 1 as the following equation.

P{|Dmk
f − µ| < ℘k} = 1 − γk (4)

Where
℘k = Smk · c√

mk
, c = tγk

2
(mk − 1) and

Smk =
√

1
mk − 1

∑mk
i=1 (D(Sp, Tq, i) − Dmk

f )2.

Furthermore, based on the previous schedule, another schedule to save
energy and time is that each node samples data atη out of K time slots at

1 t-distribution has the probability density function:fγ (t) =
�( γ + 1

2 )
√

γπ�( γ2 )
(1+ t2

γ )−(γ+1)/2, where

γ is the number of degrees of freedom and� is the Gamma function.
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the periodTq while the sink still randomly and uniformly choosesm nodes to
sample data. At this time, we useDkη

f to denote the value of the aggregated
data at a nodeNk when the node samples only duringη time slots and there
arem nodes to sample data in the whole network. AndDk

f denotes the value
of aggregation data at a nodeNk whenNk samples at all time slots. The error
betweenDkη

f andDk
f could be bounded to be at most̃℘k rooted at a nodeNk

with a given confidence level 1− γk, where℘̃k ≥ 0 and 0≤ γk ≤ 1.

Lemma 1. When a node Nk randomly chooses mk (mk ≤ m) children in DTk,
to sample and aggregate data and each of mk nodes samples data at η (η ≤ K)

time slots, we have P{|Dkη

f −Dk
f | < ℘̃k} = 1−γk, where ℘̃k =

Sk · tγk
2 (mk−1)

√
mk

,

Sk is a standard deviation.

Proof. When each nodeNi gathers data atη out ofK time slots at periodTq, we
can obtain that the average of theη sampled data isDiη

f = 1
η

∑η

p=1 D(p, Tq, i)
at period Tq. And the following equation can be obtained according to
Theorem 1:

Pi{|Diη
f − Df | < ℘i} = 1 − γi

whereDf = 1
K

∑K
p=1 D(p, Tq, i), ℘i = Si · ci√

η
andci = tγi

2
(η − 1) ( 0 ≤ ℘i

and 0≤ γi ≤ 1). HereSi is described in Equation (5).

Si =
√√√√ 1

η − 1

η∑
p=1

(D(p, Tq, i) − Diη
f )2 (5)

When there are onlym nodes to sample in the whole network, to aggre-
gate data and to send the data to the sink, the expected numbermk of nodes

contained in an aggregation treeDTk is m|DTk|
n . The average valueDmk

f of

their sampled dataD(p, q, i) is D̃mk
f = 1

mk

∑mk
i=1 ηDiη

f at Tq. So the standard
deviation in Equation (2) becomes:

Sk =
√√√√ 1

mk − 1

mk∑
i=1

(Diη
f − D̃mk

f )2 (6)

According to Equation (3), the error betweenD̃mk
f andµ is:

P{|D̃mk
f − µ| < ℘k} = 1 − γk (7)
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where℘k = Sk · ck√
mk

andck = tγk
2

(mk − 1).

Notice that the numberp of time slots in each periodTq is usually small,
so the confidence level 1−γk can’t be very high at certain error℘k. When we
consider the valueDnη

f of the aggregated data at the sink whenm nodes sample
only atη time slots, the error betweenDnη

f andDn
f could be bounded to be at

most℘n under the confidence level 1−γn, where℘n ≥ 0 and 0≤ 1−γn ≤ 1.

Lemma 2. In Lemma 1, when the data is aggregated to the sink, we have
P{|Dnη

f − Dn
f | < ℘n} = 1 − γn.

In Lemma 1, the aggregation treeDTk grows into a tree rooted at the sink
DTs when the aggregated data is transmitted to the sink finally. The average
valueDm

f of their sampled dataD(p, q, i) is D̃m
f = 1

m
∑m

i=1 ηDiη
f at Tq, so

the standard deviation is̃Sn =
√

1
m − 1

∑m
i=1 (Dnη

f − D̃m
f )2. According to

Equation (5), the error betweeñDm
f andµ is: P{|D̃m

f − µ| < ℘̃n} = 1 − γ

where℘̃n = S̃n · cn√
m

andcn = tγn
2

(m − 1). At the moment,̃Dn
f = D̃m

f . Lemma

2 means that the error between the aggregation data obtained from all time
slots and that obtained fromη time slots is also bounded by the error℘n under
certain confidence level 1− γn whenm nodes sample.

B Noncontrollable Data Aggregation
In the practical environment, the nodes and the links are unreliable and the
interference is unavoidable. Therefore, some packets may be lost during trans-
mission because of the unreliability of nodes or some fault occurring. But the
number of tolerable data loss and link disconnection can be theoretically
figured out.

In the subsection A, it is controllable whether some nodes need sample
data without considering the link or the node reliability. This section is unlike
the case of the subsection A. When the packet loss does exist and all nodes
sample data at all time slots, we denote the aggregated data at the sink byDx

f .
Surelyx ≤ n.

Theorem 2. Suppose the packet loss probability Pl happens randomly and
uniformly in any time slots and among the communication between any pair
of nodes. If each node samples data at all time slots, then a parent node
can create out the aggregated data with error no bigger than ℘k under the

confidence level 1 − γk when Pl is not bigger than |DTk| − mk

uk − vk + ∑vk
j=1 |Nj| .

Proof. Without loss of generality, a parentNk of a treeDTk hasuk leaf nodes,
among whichvk leaves have their own leaf nodes. So the data from (uk −vk)Pl

nodes may be lost with probability. If we denote thevk leaves asNj, j =
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1,· · · , vk, the data fromPl
∑vk

j=1 |Nj| data nodes may be lost with probability.
Therefore, there are only|DTk|− (uk −vk)Pl −Pl

∑vk
j=1 |Nj| nodes, which can

still send their data toNk. According to Equation (4),|DTk| − (uk − vk)Pl −
Pl

∑vk
j=1 |Nj| should not be lessmk under the same℘k and 1− γk, wheremk,

℘k and 1− γk is determined according to Equation (4). So|DTk| − (uk −
vk)Pl − Pl

∑vk
j=1 |Nj| ≥ mk, i.e.

Pl ≤ |DTk| − mk

uk − vk + ∑vk
j=1 |Nj| (8)

According to the above theorem, a parent can make decision whether its
leaves need retransmit their data or not.

When the data loss probability between any pair of nodes isPl and we
denote the aggregated data at the sink asD̃n

f , the following lemma can be
obtained under a certain error℘l and confidence level 1− γl.

Lemma 3. Suppose the packet loss probability Pl happens randomly and
uniformly in any time slots and among the communication between any pair
of nodes. When all nodes transmit their data to the sink, we have P{|D̃n

f −Dn
f | <

℘} = 1 − γ when Pl ≤ 1 − m
n .

Proof. When the aggregated data is sent to the sink,|DTs| = n andmk = m.
There is no leaf node sous = vs, which has no its own leaf. According to
Theorem 2,Pl ≤ n − m∑vs

j=1 |Nj| = n − m
n = 1 − m

n , wherevs is the number of

the leaf nodes of the sink.
So Equation (3) can still be satisfied according to Theorem 1 whenPl ≤

1 − m
n .

When the permanent fault on the links or the nodes occurs, the topology
structure should be reconstructed. The issue remains to be researched in the
future work. When the temporary nodes or links fault occur, based on the
received data, a parent node can make decision whether the fault branches or
leaves need retransmit their data.

When the data loss probability of a leaf node isPl > 0, the leaf node is
required to retransmit its data. We suppose the retransmission can be success-

ful with probability Pr and define the aggregated data at the nodeNk asD
k

f
after retransmission. We can have the following result in Lemma 4.

Lemma 4. Suppose that the data loss probability of a leaf node is
Pl > 0 and the successful retransmission probability is Pr. When Pl ≤

|DTk| − mk

[uk − vk + ∑vk
j=1 |Nj|]Pr

, we have P{|Dk

f − Dn
f | < ℘r} = 1 − γ , where

℘r is a given error bound.
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Proof. If a parent nodeNk finds that the received aggregated data can not
satisfy Equation (8) when the data loss probability isPl, Nk lets the nodes,
failed to transmit, retransmit their data. [(uk −vk)Pl −Pl

∑vk
j=1 |Nj|]×Pr nodes

may retransmit their data successfully. So there are|DTk| − [(uk − vk)Pl −
Pl

∑vk
j=1 |Nj|] × Pr nodes, which finally can transmit their data successfully.

According to Equation (4),|DTk| − (uk − vk)Pl − Pl
∑vk

j=1 |Nj| should not be
lessmk under the same℘k and 1−γk, wheremk, ℘k and 1−γk are determined
according to Equation (4). So|DTk|−[(uk −vk)Pl −Pl

∑vk
j=1 |Nj|]Pr ≥ mk, i.e.

Pl ≤ |DTk| − mk

[uk − vk + ∑vk
j=1 |Nj|]Pr

(9)

C Confidence Level and Error Allocation
One interesting task is to allocate the error and the confidence level in the
network. When the error℘ is acceptable under the confidence level 1− γ

at the sink, it is necessary to allocate the error and the confidence level at
the parent nodes of different sub-trees. For example, if the error℘k and the
confidence level 1− γk at the parentNk are known in Figure 2(a), how does
Nk set the error℘i and the confidence level 1− γi for Ni (Ni ∈ DTk) among
DTk. Here, we discuss the question in the case: without data loss. The case of
data loss will be researched in the near future.

Before allocating the error under a certain confidence level among the
network, we firstly introduce theallocation model. Allocation model is the
topology model, based on which, the error under a certain confidence level
can be allocated to each parent of its subtree among the network. Generally a
tree is constituted by two kinds of basic structures:SC andCC, as shown in
Figure 3. As we know, aWSN collects data from the physical environment and
nodes transmits the data to the sink by multihop. Therefore the data always
flows unidirectionally from ordinary nodes to the sink. The basic structures

(a) CC (b) SC

FIGURE 3
Allocation Model. Dotted line means the data is collected by sensors. The solid means that the
data is transmitted by radio. The hollow circle is a parent node.
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can be modeled as the two kinds of typical circuits. Notice that the links
between any pair of nodes are bidirectional.

1) Collateral Connection In Figure 2(a), an aggregation tree rooted at node
Nk contains two levels. Each level in a tree contains several leaf nodes. For
convenience, we see a layer of an arbitrary aggregation treeDTk as shown
in Figure 2(b). The subtreeDTr rooted at nodeNr hasl leaves:N1, N2, · · · ,
Nl, whereN2 is also the parents of subsubtreeDT2. SinceN1, · · · , Nl directly
transmit their data toNr , one node would not affect others’ transmission when
some of them lose packet. For example, if a packet can not be transmitted
from N1 to Nr , it does not necessarily result in the fault of other transmission
from N2 (or N3 etc) to Nr . Therefore we can consider the subtreeDTr as a
parallel system [25] (Figure 3(a)). When we define the confidence level of
each nodeNi as 1− γi and the error℘r under the confidence level 1− γr

of the parent is given, the probabilityPr that |DNr
f − Df | < ℘r is 1 − γr .

So the probability for the parent can be described by the probability of its
leaves.

Pr = 1 −
k∏

i=1

(1 − Pi) = 1 −
k∏

i=1

γi (10)

wherePi is the probability aboutNi thatPi(|DNi
f −Df | < ℘i) is 1−γi. Notice

that some nodes, such asNl, is not selected to sample data andNr only selects
k (k ≤ l) data to sample data in Figure 2(b).

Notice that we are considering the case that there is no data loss happening.
Therefore, at leastm nodes should be selected to sample and transmit data in
the whole network according to Theorem 1. But the selection of them nodes
depends on the error bound and the confidence level given for the sink. It is
easy to give the sink the error bound and the confidence level. After that, it
is uneasy that the sink allocates its error bound and the confidence level to
its leaf nodes and its leaf nodes allocate their error bound and the confidence
level to their leaf nodes till all parent nodes are allocated the error bound and
the confidence level. In the following context, Theorem 3 gives a method to
allocate the confidence level between parents and their leaf nodes.

We design a distributed algorithm as described in Algorithm 1. In the
algorithm, we allocate the confidence level 1− γ pro rata in different nodes
when the error℘ is given. In Algorithm 1, the given graphG(V ,φ) composes
of the vertex setV and no edge set.|V | = n and the node inV is randomly
and uniformly deployed to satisfy the connection condition [23].

Theorem 3. When no data loss happens and the error bound ℘r and the
confidence level 1− γr for the parent nodes are previously given for the sink,
under CC, the leaf node Ni of the sink can be allocated the confidence level
γi, where γi = k

√
γi and k = |DTs|.
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Proof. We begin our proof based on the model described in Equation (10).
Whenk = 1, Pr = 1 − γi = Pi.

Whenk ≥ 2, k, γi and℘i will be determined in the following context.
There are many important and practical methods to distribute the proba-

bility indexes. Here we try to find the minimal error of
k∑

i=1
℘i under certain

confidence levelPr while we find ak as small as possible. A smallerk is
suitable to save more energy while a biggerk is needed to achieve a lower
error℘i. Here we useLagrange undetermined coefficients method to findk
as small as possible while to guarantee the error at a proper level. Here we
can construct aLagrange function H:

H =
k∑

i=1

℘i + λ(Pr +
k∏

i=1

γi − 1) (11)

In order to find the minimal value of℘i, we can calculate the derivative of the

Lagrange function H and let it be zero,i.e., ∂H
∂℘i

= 0. Since℘i = Si · ci√
k

and

ci = tγi
2

(k − 1), we can obtain the below equation:

℘i =
Si · tγi

2
(k − 1)

√
k

(12)

The probability density function of the random variablet is as following:

f (t,ν) = �((ν + 1)/2)√
νπ�(ν/2)

(1 + t2/ν)(ν+1)/2

whereν = k − 1, t = γi/2 and�(z) =
∞∫
0

e−t tz−1dt.

Based on Equation (11), the partial derivative ofH with respect to the
variable℘i is written as:

∂H
∂℘i

= 1 + λ

k∏
j=1,j �=i

γj
∂γi

∂℘i
(13)

According to Equation (12), we can obtain the partial derivative ofγi with
respect to the variable℘i.
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∂℘i

∂℘i
= Si√

k

∂tγi
2

(k − 1)

∂℘i

⇒ 1 = Si√
k

∂f (γi/2,k − 1)
∂℘i

⇒ C
Si

= (1 + γ 2
i

4(k − 1)
)k/2−1 γi

2(k − 1)
∂γi

∂℘i

(14)

whereC = 2
√

(k − 1)π�((k − 1)/2)√
k�((k)/2)

. Let ∂H
∂℘i

= 0 in Equation (13) and

based on Equation (14), we can obtain that:

0 = 1 + λ
1 − Pr

γi

∂γi

∂℘i

⇒ λ = − γi

(1 − Pr)
∂γi
∂℘i

= −(1 + γ 2
i

4(k − 1)
)k/2−1 γ 2

i Si

2C(k − 1)(1− Pr)

Notice that the above equation is tenable for eachγi (i = 1,· · · , k). So we
can obtain the following equation wheni �= j.

(4(k − 1) + γ 2
i )k/2−1γ 2

i Si = (4(k − 1) + γ 2
j )k/2−1γ 2

j Sj (15)

According to Equation (10) and (15),γi (i = 1,· · · , k) can be solved out.
From Equation (15), we can obtain that:

(k/2 − 1) ln (4(k − 1) + γ 2
i ) + 2 lnγi + ln Si

= (k/2 − 1) ln (4(k − 1) + γ 2
j ) + 2 lnγj + ln Sj i �= j

Since thek is same for all nodes in the sameCC modelDTr , theγi = γj

wheni �= j based on above equation. According to Equation (10),γi can be
obtained as following equation.

γi = k
√

1 − Pr = k
√

γr (16)

Serial Connection In Figure 2(a), the nodeNk is the parent ofNi andNi is
the parent ofN1. There are other leaves at both of parentsNk andNi. And under
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the kind of topology structure, the transmission on one edge affects that on
the other. For example, a successful transmission fromN1 to Nk necessarily
means that both of transmission fromN1 to Ni and fromNi to Nk should
be successful. So the kind topology structure can be modeled as the serial
connection in Figure 3(b). When we define the confidence level of each node
Ni as 1−γi and the error℘i under the confidence 1−γr of the parent is given,
the probabilityPr that |DNr

f − Df | < ℘r is 1 − γr . The probability for the
parent can be described as following equation:

Pr =
k∏

i=1

Pi =
k∏

i=1

(1 − γi) (17)

wherePi is the probability aboutNi thatPi(|DNi
f − Df | < ℘i) is 1− γi.

This paper presents an algorithm (Algorithm 1) to allocate the confidence
level from the parent nodes to leaves under bothCC andSC in Figure 3(b). We
also gives a theorem (Theorem 4) to describe the feasible of the algorithm.

Algorithm 1 Confidence Level Allocation

Input: A given graphG(V ,φ) and an error bound℘ and a confidence level
1 − γ ;
Output: A connected tree with each parent nodeNi allocated a confidence
level 1− γi.

1: Use the algorithm in [4] to construct a CDSS;
2: Give the error bound℘ and the confidence level 1− γ to sink;
3: if A nodeNi (∈ S) has more than one childthen
4: Ni allocates the confidence level among its children nodes according

to Equation (16);
5: else
6: Ni broadcasts a messageSerialAllocationi, which contains the node ID

and a counterCounti. And setCounti = 1;
7: end if
8: When a nodeNj receives a messageSerialAllocationi, Nj setsCounti+=1;
9: if Nj has more than one child nodeor is a leaf nodethen

10: Nj sends a messageReturnSerialAllocationi to Ni, which contains the
Nj ’s ID and all ID in SerialAllocationi andCounti;

11: else
12: Nj keeps on sendingSerialAllocationi to its children;
13: end if
14: if Ni receives a messageReturnSerialAllocationi then
15: It allocates the confidence level among the nodes contained in

ReturnSerialAllocationi according to Equation (21);
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16: It sends a messageAllocationResulti to the nodes contained in
ReturnSerialAllocationi.

17: end if
18: WhenNj receivesAllocationResulti, Nj sets its error bound and confidence

level according to the results inAllocationResulti;
19: if Nj has more than one childthen
20: Go to step 4;
21: end if

Theorem 4. When no data loss happens and the error bound ℘r and the
confidence level 1 − γr nodes are previously given for the sink, under SC,
the leaf node Ni of the sink can be allocated the confidence level γi, where
γi = k

√
Pr and k = |DTs|.

Proof. We give our proof based on the model described in Equation (17).

Here we also try to find the minimal error of
k∑

i=1
℘i under certain confidence

level Pr while we find ak as small as possible.
When k = 1, Pr = 1 − γi = Pi. Whenk ≥ 2, k, γi and℘i will be

determined in the following context.
Firstly we can construct aLagrange function H:

H =
k∑

i=1

℘i + λ(Pr −
k∏

i=1

Pi) (18)

In order to find the minimal value of℘i, we can calculate the derivative of the
Lagrange function H and let it be zero,i.e., ∂H

∂℘i
= 0.

Based on Equation (11), the partial derivative ofH with respect to the
variable℘i is written as:

∂H
∂℘i

= 1 + λ

k∏
j=1,j �=i

Pj
∂γi

∂℘i
(19)

SincePi = 1 − γi,
∂Pi
∂℘i

= − ∂γi
∂℘i

. Let ∂H
∂℘i

= 0 in Equation (19) and based

on Equation (14), we can obtain that:

0 = 1 + λ
Pr

Pi

∂γi

∂℘i
⇒ λ = − Pi

(Pr)
∂γi
∂℘i

= −(1 + γ 2
i

4(k − 1)
)k/2−1 γiPiSi

2CPr(k − 1)
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Notice that the above equation is tenable for eachγi (i = 1,· · · , k). So we
can obtain the following equation wheni �= j.

(4(k − 1) + γ 2
i )k/2−1γiPiSi = (4(k − 1) + γ 2

j )k/2−1γjPjSj (20)

According to Equation (17) and (20),γi (i = 1,· · · , k) can be solved out.
From Equation (20), we can obtain that:

(k/2 − 1) ln (4(k − 1) + γ 2
i ) + ln γiPi + ln Si

= (k/2 − 1) ln (4(k − 1) + γ 2
j ) + ln γjPj + ln Sj i �= j

Since thek is same for all nodes in the sameSC case, theγiPi = γjPj based
on above equation wheni �= j. According to Equation (17),γi andPi can be
obtained as following equation.

γi = 1 − Pi = k
√

Pr (21)

Now we can design an algorithm to positively control whether a node
samples data or not as shown in Algorithm 2. Based the error bound℘r at the
sink and the confidence level allocation obtained on Algorithm 1, Algorithm
2 makes each parent node know the number of its leaf nodes to sample.

Algorithm 1 Control Data Aggregation

Input: The error bound℘r at the sink and the confidence level allocation
obtained in Algorithm 1.
Output: The needed number of sampling leaf nodes of each parent node.

1: The sink calculates the needed number of sampling nodes according to
the given error bound℘r and the confidence level 1− γ according to
Equation (3);

2: Based on the confidence level allocated inAlgorithm 1 and its error bound,
each parent nodeNi calculates the needed number of sampling nodes
according to Equation (4);

3: All parent nodes finish calculating the needed number of sampling data.

D Energy Saving
Here we consider the energy saving under both cases ofcontrollable and
uncontrollable data aggregation.

When we consider that there is no data loss as subsection A, the reason of
the energy saving is mainly the data transmission reduction,i.e. some nodes
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need not sample and transmit the data and others need not sample data under
some time slots. Although some packets are inevitably retransmitted because
of collision in wireless channel, it has less retransmission to adopt lossy data
aggregation schedule since there is less data to transmit.

We define that the energy cost to sample data in a slot asEs and the energy
cost to transmit a packet in one hop asEp.

Lemma 5. When no data loss happens and only m nodes gather data at η

time slots out of K, the saved energy Ea is (n − m)((1 − η)Es + Ep).

Proof. There aren − m nodes, which can save energy since they need not
sample and transmit data. The total saved energyEt mainly contains two parts:
sampling energy and transmitting energy. Notice that each nodeNi samples
data and transmits its data to other nodeNj. Nj aggregates theNi’s data and that
of itself into one packet. The energy to transmit a packet in one hop is saved.
Ea = (n − m) × (1− η) × Es + (n − m) × Ep = (n − m)((1− η)Es + Ep).

When each transmission is unreliable with probabilityPl and onlym nodes
gather data, the saved energyEa is (n − m)Ep. Since some data is unavoid-
ably lost, the error under the same confidence level is increased. When we
positively argue to retransmit the lost data, the costed energy ism × Pl × Ep

since the number of lost packets is expectablym × Pl. Under the case, the
save energy is max{0, (n − m)((1 − η)Es + Ep) − m × Pl × Ep}.

V PERFORMANCE EVALUATION

Simulations for the performance evaluation of our method are conducted with
the OMNeT++ simulation tool [26].

In the simulation, this paper considers two cases: with and without packet
loss. The packet loss occurs when including the MAC layer in the simulation
model. All nodes are deployed in a 1000× 1000m2 area. Variable numbers
of nodes from 100 to 1000 are deployed in the area in steps of 100. Here
MAC layer implements the 802.11 protocol [27], which adopts CSMA/CA.
The receive sensitivity of the radio is at least -98dBm. The antenna can be
adjusted for a range of output power levels from -20dBm to 5dBm in steps of
1dBm. The maximal transmission radius isrmax = 260m. The detailed values
of the relative parameters are provided in [28] and [29]. In the simulation, we
set the sample period 1s with duty circle 50%. Each period is divided into
20 time slots. The nodes in the networks sample data from the information
in each period. In our simulation, we denote the original information from
the environment by the random data obeying Gaussian distributionN(µ,σ 2),
whereµ = 30 andσ = 5.

A additional task is to guarantee the connectivity of the original. Esfaha-
nian and Hakimi described some relative algorithms solved the connectivity
problem in detail [30]. Esfahanian proposed an algorithm to calculate the
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vertex connectivity, which requires [n − δ − 1+ 1
2k(2δ − k − 3)] times calls

of the MFA [31].

A Without Packet Loss
Under this case, all links has no packet loss. We set C1=70%, C2=80%,
C3=90% and C4=100%. The error intervals are illustrated respectively in
Figure 4(a) and Figure 4(b) while the given confidence levels are respectively
equal to 0.8 and 0.9. In both of the figures, the error intervals dramatically
decrease when the number of nodes increases. The error interval can be very
small when the number of nodes is large enough. In other words, the lossy
data aggregation scheme would not incur large error when the number of
nodes is large. Therefore it is feasible to adopt lossy data aggregation method
in WSNs, especially when the total number of nodes is large.

From Figure 4(a), we can also find that the error intervals of C1, C2, C3 and
C4 are gradually close to each other when the number of node is increasing.
Therefore it would not greatly affect the data aggregation accuracy to adopt
lossy data aggregation scheme in WSNs, especially when the total number of
nodes is large. The similar result can also be found in Figure 4(b).

In the above simulation, we count the energy consumption under the con-
fidence levels 0.8 and 0.9 in each period. The energy consumptions per node
under two cases are respectively presented in Figure 5(a) and Figure 5(a). It
can be easily found that there is minimal energy consumed under the case C1
while there is maximal energy consumed under the case C4. With the increas-
ing number of nodes, the difference of energy consumption among four cases
C1, C2 and C3 and C4.i. e., it can save more energy when lower percentage
of nodes sample data.

(a) 1− γ = 0. 8 (b) 1− γ = 0. 9

FIGURE 4
The error inteval under different given confidence level. C1,C2,C3 and C4 respectively
represent:70%, 80%, 90% and 100% nodes to sample data.
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(a) 1− γ = 0. 8 (b) 1− γ = 0. 9

FIGURE 5
The energy consumption under different given confidence level.

From both of Figure 4 and Figure 5, we can find that it can save more energy
by adopting lower percentage of nodes to sample data and the amount of saved
energy can relatively increase when the number of nodes is increasing. At the
same time, the data accuracy, which is indicated by the error interval, can be
bounded, especially when the number of nodes goes to larger.

B With Packet Loss
Under the case, the link is not reliable,i. e., the packet may be lost because
of the wireless interference and media access competition. The error inter-
vals under the confidence levels 0.8 and 0.9 are respectively presented in
Figure 6(a) and Figure 6(b). In Figure 6(a), the error interval decreases with
the increasing of the number of nodes. Comparing to the error interval in
Figure 4(a), the error interval in the figure is higher except the case C1. It is
caused by the unpredictable data loss. Under C1, the error interval decreases

(a) 1− γ = 0. 8 (b) 1− γ = 0. 9

FIGURE 6
The error interval under different given confidence level.
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from Figure 4(a) to Figure 6(a), which is also caused by the unpredictable
data loss. It results in the smaller difference among the error intervals under
C1, C2, C3 and C4. Since the data loss is unavoidable in practical application,
it may result in less effect on the data accuracy than that under the case in
Figure 4(a). The similar results can also be concluded in Figure 6(b).

Because of the data loss, the energy consumption in Figure 7(a) is higher
than that in Figure 5(a). But it is same in both figures that the less number of
nodes to sample data causes less energy consumption and the saved energy
relatively increases with the increasing of number of nodes. In Figure 8, the
effect of confidence level on the data deliver rate (DDR) is presented. Higher
confidence level needs higher DDR.And the DDR decreases when the number
of nodes increases, which is caused by two reasons. One is the packet loss
while the other is that the number of sampled data increases with the increasing
of the number of nodes.

(a) 1− γ = 0. 8 (b) 1− γ = 0. 9

FIGURE 7
The energy consumption under different given confidence level.

(a) 1− γ = 0. 8 (b) 1− γ = 0. 9

FIGURE 8
DDR under different given confidence level.
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In both of Figure 5 and Figure 7, we can find that lower confidence level
causes higher energy consumption. Lower confidence level means the corre-
spondingγ is high then the error interval is lower, which means that it need
more sample data to keep the same probability that the data error falls in a
more narrow interval. So a higher confidence level does not mean a good
choice. Especially when the number of the nodes is larger, a high confidence
level contributes a little to decreasing the error interval. However, a higher
confidence level would not necessarily lead to larger difference among error
intervals, as show in Figure 6. In practical applications, how to choose the
confidence level or the error interval depends on the constraints or the require-
ments of the users. If a certain error interval is acceptable, it is feasible and
energy saving to adopt the scheme in this paper. In fact, the data redundancy
often exists in WSNs.

VI CONCLUSION

In this paper, we first study the error between the value obtained from all
nodes and that from a part of nodes is bounded when assuming that there
is no data loss. We give detailed analysis on the relation between the error
bound and the number of sampling nodes or time slots when the confidence
level is previously given. In order to minimizing the number of sampling leaf
nodes and time slots, we design algorithms to assign the confidence levels
among the parent nodes based on corresponding confidence level. We also
study the case when data loss exists and compute the probability bound when
the confidence level and the error bound are given.

There are some work waiting to be solved in future. In the real network,
the DT is often composed of theSC and CC. It is complex to build the
model for the compound structure. When the distribution of the sampled data
does not obey Gaussian distribution, we will estimate the probability density
function in a complex and time-variation environment. Since the paper has
analyzed the error bound under the certain confidence level when the data loss
probabilityPl > 0, we will design the algorithm that allocates the error bound
and the confidence level with the existence of the data loss probability. We
will analyze the error and confidence level allocation under the asynchronous
case. Since the clock offset in WSNs is unavoidable and relatively large [32]
and it costs much extra energy to synchronize time in the network.
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