
Computers and Electrical Engineering 86 (2020) 106694 

Contents lists available at ScienceDirect 

Computers and Electrical Engineering 

journal homepage: www.elsevier.com/locate/compeleceng 

An improve d localization method in cyb er-social 

environments with obstacles 

✩ 

Zhigang Gao 

a , ∗, Hongyi Guo 

a , Yunfeng Xie 

a , Huijuan Lu 

b , Jianhui Zhang 

a , 
Wenjie Diao 

a , Ruichao Xu 

a 

a College of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, China 
b College of Information Engineering, China Jiliang University, Hangzhou, China 

a r t i c l e i n f o 

Article history: 

Received 30 November 2018 

Revised 21 August 2019 

Accepted 30 April 2020 

Keywords: 

Cyber-Social Systems 

WiFi-Based localization 

Angle of Arrival (AOA) 

Unscented Kalman filter 

a b s t r a c t 

In Cyber-Social Systems (CSS), sensors play a key role in the intelligent perception and 

recognition of people, objects and the environments, in which target localizing is one of 

the important issues. It is often difficult to accurately and conveniently localize the sensors 

due to the presence of Non-Line Of Sight (NLOS) when there are obstacles. This paper pro- 

poses a sensor localization method based on WiFi (Wireless Fidelity) localization, which 

first collects the angle and intensity information of the WiFi signals of mobile base sta- 

tions during a linear or curvilinear motion, then uses the Nonlinear Inequality Constrained- 

Unscented Kalman Filter (NIC-UKF) method presented in this paper to filter interference, 

so as to localize the positions of sensors. The method has stronger stability, high preci- 

sion, and acceptable computing overhead, which is suitable for the localization of fixed or 

low-speed moving targets in Cyber-Social environments with obstacles. 

© 2020 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

At present, with the rapid development of network technology and sensing technology, Cyber-Physical Systems (CPS) have

become more and more popular [1–3] . CPS integrate computing, communication, and control, and it changes the interaction

way between people and the real world by merging the cyber world and the physical world. As the Internet of Things

(IoT) plays an increasingly important role in human activity, CSS, combined with social computing and sensing computing,

have attracted many researchers’ attention [4] . CSS acquire information about human society through IoT systems, including

environments, transportation, and social activities, to optimize people’s interactions and social management. In CSS, location

information is widely used. For example, in location-based social networking APPS (APPlicationS), social networking APPS

recommend new friends to users based on their geographic location information; in advertisement APPS, service providers

push advertisement in a timely manner based on the environments and locations of users; and in some open wilderness or

complex indoor parks, the locations of persons need to be probed to provide the corresponding guiding service. Therefore,

it is important to determine the locations of the wireless nodes deployed on objects or persons. 

For decades, there are many research works to estimate the locations of wireless nodes without using GPS modules

[ 5 , 15–21 ]. In CSS, many activities occur in environments such as in mountains, shopping malls, and indoor meeting places,
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etc., where 3G/4G or GPS signals are weak because the transmission of wireless signals is blocked by obstacles. How to

localize the wireless nodes accurately in those environments is an important prerequisite for the effectively work of CSS.

When there are obstacles, wireless node localization will incur additional errors due to the presence of NLOS. A challenging

problem is how to mitigate the impact of NLOS [6] . A common strategy in NLOS mitigation techniques is to use filtering

approaches, e.g., the Kalman filter [7–8] , the Extended Kalman Filter (EKF) [9–10] , the Unscented Kalman Filter (UKF) [ 9 , 11 ],

and the Particle Filter (PF) [12] . In order to deal with the nonlinear models of localization problems in CSS, some researches

linearize the nonlinear models by using linearization techniques [13–14] . However, linearization techniques will incur some

performance degradation in localization accuracy. In addition, nonlinear filters such as EKF, UKF and PF will also suffer from

the problem of filtering divergence [14] . To the best of our knowledge, few studies have focused on filtering divergence of

nonlinear filters. 

In this paper, we propose a localization method based on WiFi signals, which first collects the angle and intensity infor-

mation of WiFi signals of mobile base stations, and then uses NIC-UKF to filter the signals, so as to localize the positions

of sensors. The main contribution of this paper is that we present the NIC-UKF method to solve the problem of filtering

divergences, and NIC-UKF can effectively mitigate the impact of NLOS. Furthermore, we present the method of extending

the motion trajectory of a mobile base station to curvilinear motions, making NIC-UKF more suitable to the real-world ap-

plications. 

The remainder of this paper is organized as follows. In Section 2, we introduce the related work on wireless node local-

ization. In Section 3, we describe the application scenario and ranging models. In Section 4, we present the NIC-UKF method

in detail. Experimental results and analyses are performed in Section 5. Finally, Section 6 summarizes this paper. 

2. Related work 

2.1. Wireless node localization 

There are two kinds of algorithms about wireless node localization in CSS, i.e., range-free localization algorithms [ 5 , 15–16 ]

and range-based localization algorithms [17-20] . Range-free localization algorithms depend on hardware devices and use

network connectivity to estimate the approximate distance. Range-based localization algorithms estimate the distance be- 

tween unknown nodes and base stations by ranging, which is usually calculated based on Received Signal Strength Indication

(RSSI), Time Of Arrival (TOA), Time Difference Of Arrival (TDOA), or AOA. 

Aiming at range-free localization algorithms, Zhou et al. proposed an improved APIT (Approximation Point-In- 

riangulation) range-free localization algorithm which expands the definition of neighbor nodes and imports neighbor le-

gality to improve the accuracy of localization estimation [5] . By introducing the weight of anchor nodes, Li et al. proposed

a weighted DV-Hop (Distance Vector Hop) algorithm [21] , and Wang et al. proposed a weighted centroid localization algo-

rithm [15] to improve the localization accuracy. Sun et al. proposed an improved MDS-MAP (MultiDimensional Scaling MAP)

algorithm which reduced distance matrix involved and fully used nodes with ranging capability to reduce computational

complexity [16] . 

Aiming at range-based localization algorithms, the Whistle algorithm designed by Xu et al. fundamentally changes TDOA

in the sense of relaxing the synchronization requirement and avoiding the error caused by time synchronization [17] . Leng

et al. proposed an improved RSSI filter based on the reference distance to reduce the RSS fluctuation [18] . Pradhan et al.

proposed a line intersection algorithm named the advanced TOA to solve the problem of TOA fluctuation [19] . Zhang et al.

proposed a new approach named the AOA based Three-dimensional Multi-target Localization (ATML) to solve the problem

of multiple sensor nodes localization under the 3D condition [20] . 

With the improvement of device accuracy, the range-based localization algorithm exhibits more advantage, such as higher

accuracy and stronger flexibility. However, single measurement approach will incur measurement errors inevitably. In this

paper, we adapt a method combining RSSI with AOA to get more accurate locations. 

2.2. NLOS mitigation techniques 

NLOS mitigation techniques are big challenges in wireless node localization due to the obstacles in the direct propagation

paths of signals. NLOS will lead to unreliable localization and significantly reduce the localization accuracy if its impact is

not properly dealt with. 

It is a low-cost and effective approach to eliminate the errors of NLOS by filtering. Zhang et al. proposed a NLOS error

mitigation algorithm based on the Kalman filter. Both the true values of TOA and the NLOS errors are served as the state

variance of the Kalman filter [8] . To simplify the process of nonlinear models, some researchers use linearized techniques

to address the nonlinear problem. Khan et al. first linearized the nonlinear model by employing RSSI/AOA, and then applied

the Kalman filter to localizing the positions of wireless nodes [13] . Tomic et al. proposed an approach based on maximizing

a posteriori principle and a Kalman filter to linearize the nonlinear problem of target tracking by converting coordinate

system from the cartesian coordinate to the polar coordinate [14] . In addition, EKF, UKF and PF also can be used to solve the

nonlinear problem. Hammes et al. proposed a robust EKF for tracking a mobile node based on semi-parametric estimators

[10] . Nowak and Eidloth proposed an approach to overcome the multipath problem by using UKF dynamically to estimate

the channel states [11] . Read et al. proposed a distributed PF for nonlinear tracking problem in Wireless Sensor Networks
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Fig. 1. The application scenario of NIC-UKF. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(WSN). When using the same number of particles as a centralized filter, the speed of the distributed PF algorithm is four

times faster than that of PF [12] . 

In this paper, because UKF has a good performance in dealing with nonlinear measurement models, we select UKF to

mitigate the impact of NLOS. But UKF suffers from possible filtering divergence at the beginning of filtering process. We

overcome this problem by presenting the NIC-UKF method. 

3. Application scenario and ranging models 

In this section, we first introduce the application scenario of NIC-UKF in Section 3.1 , and then we describe the ranging

model that will be used in the following sections in Section 3.2 and Section 3.3 . Finally, we define the constraints used in

NIC-UKF. 

3.1. Application scenario 

In this paper, the application scenario is shown in Fig. 1 . In Fig. 1 , the sensor nodes are randomly deployed in the wild,

and their deployment locations are uncertain in advance and may be shielded by trees, stones, or walls, etc. In order to

measure the positions of the wireless sensors, a vehicle carrying a WiFi mobile base station travels on the road once and

measures the signals of each node at certain intervals. For each sensor node, its angle and WiFi strength information is

measured in three or more different positions, and its position can be determined by using the NIC-UKF method. Note that

this scenario can also be extended to indoor ones, and the mobile base station can also be any device with the ability to

measure the strength and angle information of WiFi signals. 

3.2. RSSI ranging model 

RSSI ranging is used to estimate the distance based on the attenuation characteristics of the signal transmission process.

The distance between two points can be calculated according to the RSSI power value between the transceivers and the

signal transmission model. 

In wireless transmission, the existing propagation path loss models include the free space propagation model, the log-

distance path loss model, the hata model and the log-distance distribution model, etc [22] . In this paper, we select the

log-distance path loss model because it can meet the requirements of diverse real-world environments. 

The log-distance path loss model consists of two parts. The first part is the path loss after transmitting a certain distance,

which can be used to predict the average power received in a distance d i . The second part is the Gaussian random variable.

The RSSI value at d i is 

P ( d i ) = P T + G − P L ( d 0 ) − 10 ε lg 

(
d i 
d 0 

)
− W σ (1)

Where P(d i ) represents the RSSI value of the wireless node i received by the base station, P T represents the signal transmis-

sion power, G represents the antenna gain; PL(d 0 ) represents the path loss of the reference distance d 0 (usually d 0 = 1m.),

and d i represents the distance between a node i and the base station; ε represents the signal loss attenuation factor relevant

to the environment. W σ represents a Gaussian distribution random variable with a mean of zero ( σ is usually set to 4~6) .

In the right side of Eq. (1) , W σ is the Gaussian random variable, and the other part is path loss. 
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Fig. 2. Parameters in GBSBSCM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Let γ = P T + G − PL ( d 0 ) − W σ , thus the distance d i can be denoted as 

d i = 10 

γ −P ( d i ) 
10 ε (2) 

3.3. Geometrically Based Single Bounce Statistics Channel Model (GBSBSCM) 

GBSBSCM is a single-channel model used in AOA localization algorithms, which is suitable for the micro-cellular envi-

ronment. In this paper, we assume the height of base station antennas is higher than that of wireless nodes. 

As shown in Fig. 2 , obstacles are distributed in a circle whose center is the wireless node to be localized. ϕ represents the

angle between the obstacle 1 and the East orititation; α represents the angle between the East orititation and the wireless

node; and θ represents the angle between the wireless node and the obstacle 1. R m 

is the radius of obstacles which have

influence on the localization of the mobile base station. The distance D between the wireless node and the mobile base

station is greater than R m 

. 

In Fig. 2 , the maximum delay spread τmax and the maximum angle spread θmax are defined as 

τmax = 2 R m 

/c 

θmax = arcsin 

(
R m 

D 

)
= arcsin 

( 

R m √ 

( x − x i ) 
2 + ( y − y i ) 

2 

) 

(3) 

where c is the speed of light. When the location of the mobile base station is known, the maximum delay spread and the

maximum angular spread are only related to the size of the scattering area. The radius R m 

of the scattering region can be

derived from actual measurement or the COST-207 model [23] . 

In this paper, we use the RSSI ranging model to model the strength of WiFi signals, and GBSBSCM to localize the positions

of wireless nodes. So we use the same parameters in the two models. However, the RSSI measurement value will generate a

positive error due to the presence of NLOS. As a result, the RSSI measurement value will increase and the prediction distance

between a wireless node and a base station will decrease. In order to solve the above problem, after we get the maximum

angle spread θmax through GBSBSCM, we consider the values of RSSI and AOA subject to the constraints as follows. 

st. 

{ 

θmax − (ϕ − α) ≥ 0 

d i − 10 

γ −P( d i ) 

ε ≥ 0 

(4) 

4. Implementation process of NIC-UKF 

NIC-UKF includes four phases, i.e., the initialization phase, the unscented transformation (UT) phase, the prediction phase,

and the update phase. The flow of NIC-UKF is shown in Fig. 3 . 

The purpose of the initialization phase is to determine the object Eq. and the observation Eq., and to initialize the re-

quired parametric vectors, such as the state vector, the state transfer matrix and the covariance matrix of the noise. The

purpose of the unscented transformation phase is to carry out data fusion. If there are the current measurement value (the

RSSI and angle values measured by the receiving device) and the estimation of the previous period, the unscented trans-

formation can estimate the current state vector, which can be considered to be a reliable optimal estimation of the state

value. The purpose of the prediction phase is to predict the state of the (k + 1)-th moment by using the estimation of the

k-th moment state. The purpose of the update phase is to obtain the optimal estimation of the state vector of the (k + 1)-th

moment according to the target Eq. and the observation Eq., together with the measurement value of the k-th moment and

the estimation value of the (k + 1)-th moment. 
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Fig. 3. The flow of NIC-UKF. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1. Initialization phase 

In UKF, nonlinear functions consist of an objective Eq. X with Gaussian noise W k and an observation Eq. Z with Gaussian

noise V k , as defined in {
X k +1 = f ( x k , W k ) 

Z k = h ( x k , V k ) 
(5)

In Eq. (5) , the objective Eq. reflects the state change process of the base station when it moves from the location of the

k-th moment to the one of the (k + 1)-th moment. The observation Eq. represents the observation estimation value calculated

by the state vector. For example, given the distance between a moving base station and a wireless node, we can calculate

the estimated RSSI value by the observation Eq.. However, in the NLOS propagation environment, both the estimated RSSI

value and the measured RSSI value have errors. The unscented Kalman filter comprehensively considers the measured value

and the estimated value, and obtains the RSSI value close to the real-world environment after many rounds of iteration and

the optimal estimation. The objective function in (5) is defined as 

X k +1 = 	X k + W k (6)

We assume the movement trajectory of the mobile base station is a uniform linear motion. We define the state vector X

as 

X = ( x, v x , y, v y , tan α) (7)

where (x, y) represents the location of mobile base station, v x and v y represent the velocities in the x and y directions

respectively, α represents the angle between the mobile base station and the wireless node. We assume 
t represents the

sampling period. The state-transition matrix 	 is defined as 

	 = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

1 
t 0 0 0 

0 1 0 0 0 

0 0 1 
t 0 

0 0 0 1 0 

0 0 0 


t 
x k 

x k −1 

x k 

⎤ 

⎥ ⎥ ⎥ ⎦ 

(8)

We assume y k − 1 represents the position of mobile base station in the y direction at the previous moment. According to

the distance evaluated from RSSI and AOA and an anti-trigonometric Eq., we define the observation Eq. in Eq. (5) as 

Z k = h ( X k ) + V k = 

[ 

arctan 

(
y k −y 
x k −x 

)
−10 ε lg 

(√ 

( x k − x ) 
2 + ( y k − y ) 

2 + γ
)] 

+ V (9)

Where h(X k ) is the observation value, and V is the noise of the observation value. In Eq. (9) , the observation Eq. is

nonlinear, so we use the unscented Kalman filter to deal with the nonlinear problems. The purpose of Sigma sample points

in the unscented Kalman filter is to deal with the nonlinear transfer problem of mean and covariance, and to approximate

the probability density function of the state vectors by a series of Sigma sample points that conform to the original state

distribution. The mean and covariance after the nonlinear transformation can obtain at least the 3-order precision of Taylor

expansion. 

We assume that the activation noise W k has a covariance matrix Q and the measurement noise V k has a covariance

matrix R . The filter can get better performance by searching the optimal Q through experiments. Q is a diagonal matrix
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generally with very small values of the main diagonal, so it is easy to converge quickly. The value of R is related to the

precision of the measuring instrument. Similar to Q, R can be obtained through experiments. The smaller the value of R , the

faster the speed of convergence. Q and R are defined as 

Q = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 0 0 0 0 0 

0 1 0 0 0 0 

0 0 0 . 1 

2 0 0 0 

0 0 0 0 . 1 

2 0 0 

0 0 0 0 0 . 01 

2 0 

0 0 0 0 0 0 . 01 

2 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, R = 

[
5 

2 0 

0 0 . 01 

2 

]
(10) 

In the initialization phase, we need to input the value of RSSI and AOA. Furthermore, we initialize the parameters such

as X 0 , Z 0 , 	, Q and R . 

4.2. Unscented transformation phase 

UKF uses a sampling technique named as the unscented transformation to meet the mean and covariance of nonlinear

problems. In the unscented transformation phase, UKF first selects some sample points according to a certain rule in the

original state distribution. It requires the mean and covariance of sample points are equal to those of the original state

distribution. After that, these sample points are substituted into the nonlinear functions to obtain the corresponding trans-

formed mean and covariance. The transformed mean and covariance have the third-order Taylor expansion accuracy for

Gaussian distribution. The state vector X of Eq. (7) is an n -dimensional variable, and its mean X̄ and variance P are known.

The formulas for calculating the 2 n + 1 Sigma sample points X are defined as ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

X (0) = X̄ , i = 0 

X (i ) = X̄ + ( 
√ 

(n + λ) P ) , i = 1 ∼ n 

X (i ) = X̄ − ( 
√ 

(n + λ) P ) , i = n + 1 ∼ 2 n 

(11) 

where ( 
√ 

P x ) 
T ( 
√ 

P x ) = P x , and the variance P x is the x-th state vector of X. The corresponding weights of these sample points

are defined as ⎧ ⎪ ⎨ 

⎪ ⎩ 

ω m 

(0) = 

λ
n + λ

ω c (0) = 

λ
n + λ + (1 − a 2 + β) 

ω m 

(i ) = ω c (i ) = 

λ
2(n + λ) 

, i = 1 ∼ 2 n 

(12) 

where ω represents the relevant weight of sample points, m denotes the mean of sample points, c denotes the covariance

of sample points, i is the number of sample points ( i = 1, 2, ..., 2 n + 1), and λ is a scaling parameter used to reduce the

total prediction error ( λ = a 2 ( n + κ) − n ). The selection of the parameter a controls the distribution state of the sample

points. κ is a pending parameter. Although there is no limitation for the value of κ , it should usually ensure that the matrix

(n + λ) P is a positive semidefinite matrix. The pending parameter β is a non-negative weight coefficient, it can combine

the moment of the high order Taylor expansion to meet the nonlinear requirements. 

4.3. Prediction phase 

After obtaining a set of Sigma points in the unscented transformation phase, we calculate the corresponding weights of

X k (i) (i.e., the i-th column of the Sigma point set X at the time moment k .) by 

X k (i ) = 

[ 
ˆ X k ̂

 X k + 

√ 

(N + λ) P (k ) ̂  X k −
√ 

(N + λ) P k 

] 
(13) 

where ˆ X k represents the estimation state vector at the time moment k , and then we calculate X −
k +1 

(i ) (i.e., the one-step

prediction of the i-th sampling point of Sigma point set X at the time monent k + 1) by 

X 

−
k +1 

(i ) = f [ k, X k (i ) ] (14) 

In the following part, the superscript "-" denotes the prediction value, and the the superscript " ̂ " denotes the estimation

value. In Eq. (14) , the purpose of the one-step prediction of Sigma point set is to estimate the state vector of the (k + 1)-th

moment from that of the k-th moment by using Eq. (6) , and then Z −
k +1 

can be calculated by Eq. (9) . After that, we calculate

the one-step prediction and covariance matrix of the state vector obtained by using weighted summation of the predicted

values of the Sigma point set. The weight is obtained by the unscented transformation. The prediction functions are defined
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as 

ˆ X 

−
k +1 

= 

2 n ∑ 

i =0 

ω(i ) X 

−
k +1 

(i ) 

P −
k +1 

= 

2 n ∑ 

i =0 

ω(i ) 
[

ˆ X 

−
k +1 

− X 

−
k +1 

(i ) 
][

ˆ X 

−
k +1 

− X 

−
k +1 

(i ) 
]T + Q 

(15)

where ˆ X −
k +1 

represents the prediction state vector at the time moment k + 1 , and P −
k +1 

denotes the covariance matrix of the

prediction state vector at the time moment k + 1 . We then use the unscented transformation again to generate a new set of

Sigma points based on the one-step prediction values. The function is defined as 

X 

−
k +1 

(i ) = 

[ 
ˆ X 

−
k +1 

ˆ X 

−
k +1 

+ 

√ 

(n + λ) P −
k +1 

ˆ X 

−
k +1 

−
√ 

(n + λ) P −
k +1 

] 
(16)

We obtain the mean and covariance of the prediction phase by weighted summation based on the predicted observation

values of the Sigma point set. The prediction phase functions are defined as 

Z̄ −
k +1 

= 

2 n ∑ 

i =0 

ω(i ) Z −
k +1 

(i ) 

P Z k +1 Z k +1 
= 

2 n ∑ 

i =0 

ω(i ) 
[
Z −

k +1 
(i ) − Z̄ −

k +1 

][
Z −

k +1 
(i ) − Z̄ −

k +1 

]T + R 

P X k +1 Z k +1 
= 

2 n ∑ 

i =0 

ω(i ) 
[
X 

−
k +1 

(i ) − Z̄ −
k +1 

][
Z −

k +1 
(i ) − Z̄ −

k +1 

]T + R 

(17)

where Z̄ −
k +1 

represents the predicted mean of observation function at the time moment k + 1 , P Z K Z K and P X K Z K represent the

state-measurement cross-covariance matriices. P Z k +1 Z k +1 
denotes the cross-covariance matrix between the predicted obser-

vation vector and the predicted mean of observation function. P X k +1 Z k +1 
denotes the cross-covariance matrix between the

predicted state vector and the predicted mean of observation function. The purpose of Eq. (17) is to calculate the mutual

covariance matrix of the objective Eq. and the observation Eq., and the mutual covariance matrix integrates the mutual

characteristics of the observed value and the estimated value. The Kalman gain is calculated by using the mutual covariance

matrix, and the optimal estimation value ˆ X k +1 of the (k + 1)th moment state vector can be obtained by the Kalman gain. 

4.4. Update phase 

In the update phase, we calculate the Kalman gain matrix K k + 1 and update the state vector and covariance by 

K k +1 = P X k +1 Z k +1 
P −1 

X k +1 Z k +1 

ˆ X k +1 = 

ˆ X 

−
k +1 

+ K k +1 

[
Z k +1 − ˆ Z −

k +1 

]
P k +1 = P −

k +1 
− K k +1 P Z k +1 Z k +1 

K 

T 
k +1 

(18)

The value of ˆ X k +1 needs to be modified by nonlinear inequality constraints in Eq. (4) to achieve constraint optimization.

We use the maximum angular spread θmax obtained by GBSBSCM to constrain the angle of arrival of the mobile base station

at different locations. In the NLOS transmission environment, the RSSI measurement value will generate a positive error, so

that the measured distance between the mobile base station and the wireless node is greater than the real distance. The

objective function and constraint conditions are defined as 

F (x, y ) = min 

x,y 

(∣∣αi − arctan ( y i −y 
x i −x 

) 
∣∣2 + 

∣∣∣10 

γ −P( d i ) 

10 ε −
√ 

( x i − x ) 
2 + ( y i − y ) 

2 
∣∣∣2 )

s.t. 

⎧ ⎨ 

⎩ 

arcsin 

(
R m √ 

( x i −x ) 
2 + ( y i −y ) 

2 

)
−
∣∣αi − arctan 

(
y i −y 
x i −x 

)∣∣ ≥ 0 

10 

γ −P( d i ) 

10 ε −
√ 

( x i − x ) 
2 + ( y i − y ) 

2 ≥ 0 

(19)

where αi represents the angle of wireless node at the i-th location detected by the mobile base station. After the optimiza-

tion process of the nonlinear inequality constraints, new filter update values ˆ X 
k +1 

and P 
k +1 

are replaced in the next iteration

of update state. When NIC-UKF is completed, we can get the position of wireless node from the result of ˆ Z −
k +1 

. The purpose

of the constraint conditions is to avoid the filtering divergence of ˆ X k +1 . 

4.5. Curvilinear motion 

In the earlier Sections of Section 4 , we assume the mobile base station moves in a straight line. But in a real-world

environment, a road will not always be a straight line, and there are usually turns or curved roads. Usually, it uses the con-

stant turn rate and the constant tangential acceleration model (CTRA) to model the curvilinear motion [8] . An acceleration
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Fig. 4. Curvilinear motion in signal collection. 

 

 

 

 

 

of curvilinear motion can be decomposed into a tangential acceleration αT and a centripetal acceleration αC , as shown in

Fig. 4 . The angles of positions, the speeds, and the accelerations of the mobile base station are defined as 

ψ k +1 = ψ k + ϑ k · t, v k +1 = v k + a T 
k 

· t 

v x 
k +1 

= v k +1 · cos ( ψ k +1 ) , v y 
k +1 

= v k +1 · sin ( ψ k +1 ) 

a T,x 
k +1 

= a T 
k +1 

· cos ( ψ k +1 ) , a T,y 

k +1 
= a T 

k +1 
· sin ( ψ k +1 ) 

a C,x 
k +1 

= −ϑ k · v k +1 · sin ( ψ k +1 ) 

a C,y 

k +1 
= ϑ k · v k +1 · cos ( ψ k +1 ) 

(20) 

where t is the time interval between two samplings, ϑ represents the turn of the mobile base station with a constant rate,

ψ represents the heading angle, and v represents the velocity of the mobile base station. The superscript x and y denote

the components in the x and y axes respectively. 

The Eq.s for predicting the location of x direction and y direction at the next moment from the previous moment are

defined as 

x k +1 = x k + 

v k · ( sin ( ψ k +1 ) − sin ( ψ k )) 

ϑ k 

+ 

a T 
k 

· ( cos ( ψ k +1 ) − cos ( ψ k )) + a T 
k 

· ϑ k · t · sin ( ψ k +1 ) 

ϑ 

2 
k 

y k +1 = y k −
v k · ( cos ( ψ k +1 ) − cos ( ψ k )) 

ϑ k 

+ 

a T 
k 

· ( sin ( ψ k +1 ) − sin ( ψ k )) − a T 
k 

· ϑ k · t · cos ( ψ k +1 ) 

ϑ 

2 
k 

(21) 

We can derive the state vector from the CTRA model. The state vector X ctra is defined as 

X ctra = (x, v x , a T x , y, v y , a T y , ϑ) (22) 

The state-transition matrix is derived as 

	ctra = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 

∂ x k +1 

∂v x 
k 

∂ x k +1 

∂a T,x 
k 

0 

∂ x k +1 

∂v y 
k 

∂ x k +1 

∂a T,y 

k 

∂ x k +1 

∂ ϑ k 

0 

∂v x 
k +1 

∂v x 
k 

∂v x 
k +1 

∂a T,x 
k 

0 

∂v x 
k +1 

∂v y 
k 

∂v x 
k +1 

∂a T,y 

k 

∂v x 
k +1 

∂ ϑ k 

0 0 

∂a T,x 
k +1 

∂a T,x 
k 

0 0 

∂a T,x 
k +1 

∂a T,y 

k 

∂a T,x 
k +1 

∂ ϑ k 

0 

∂ y k +1 

∂v x 
k 

∂ y k +1 

∂a T,x 
k 

1 

∂ y k +1 

∂v y 
k 

∂ y k +1 

∂a T,y 

k 

∂ y k +1 

∂ ϑ k 

0 

∂v y 
k +1 

∂v x 
k 

∂v y 
k +1 

∂a T,x 
k 

0 

∂v y 
k +1 

∂v y 
k 

∂v y 
k +1 

∂a T,y 

k 

∂v y 
k +1 

∂ ϑ k 

0 0 

∂a T,y 

k +1 

∂a T,x 
k 

0 0 

∂a T,y 

k +1 

∂a T,y 

k 

∂a T,y 

k +1 

∂ ϑ k 

0 0 0 0 0 0 1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(23) 

In the curvilinear motion, it has the same observation functions as Eq. (9) . The noise covariance matrix Q ctra and R ctra are

defined as 

Q ctra = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 0 0 0 0 0 0 

0 1 0 0 0 0 0 

0 0 0 . 1 

2 0 0 0 0 

0 0 0 0 . 1 

2 0 0 0 

0 0 0 0 0 . 01 

2 0 0 

0 0 0 0 0 0 . 01 

2 0 

0 0 0 0 0 0 0 . 001 

2 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, R ctra = 

[
5 

2 0 

0 0 . 01 

2 

]
(24) 
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Fig. 5. The localization in a square area. 

Table 1 

Summary of simulation parameters. 

Parameter Description Value 

P T signal transmission power 20dBm 

ε path loss exponent 3.68 

PL(d 0 ) path loss constant 41.5dB 

G antenna gain 3dBi 

τ max maximum delay spread 1.98 μs 

β pending parameter of UT 2 

λ = a 2 ( n + κ) − n scaling parameter of UT −5.9994 

W σ standard deviation of RSSI noise power 9dBm 

N PF number of particles in PF 200 

T duration of the trajectory 150s 


t sampling interval 1s 

ν speed of mobile base station 1m/s 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Furthermore, the objective function and constrain conditions of curvilinear motion are as same as those of the linear

motion model in Eq. (19) . 

In order to be suitable for the curvilinear motion, we only need to modify some parameters in the initialization phase

of NIC-UKF. We replace the state vector X , state-transition matrix 	, noise covariance matrix Q and R with X ctra , 	ctra , Q ctra

and R ctra respectively. 

5. Experiments and analysis 

5.1. Simulation experiment 

In this section, we design MATLAB simulation experiments to evaluate the performance of the NIC-UKF method on wire-

less node localization. We consider a representative scenario as shown in Fig. 5 . A mobile base station moves along a square

track, and there are three wireless nodes deployed along the track. 

We assume the locations of the three wireless nodes are [10, 40], [40, 70] and [70, 10] respectively. The velocity of

mobile base station is 1m/s in order to be compared with the other research work. Because the base station moves in a

uniform linear motion, while the wireless nodes are in a stationary state, in order to describe both of them conveniently, a

fixed coordinate system is used to describe their positions. The sampling interval is 1s. The main simulation parameters of

ranging model and UT are listed in Table 1 . 

We use root mean square error (RMSE) to evaluate the performance metric of localization. RMSE is defined as 

RMS E t = 

√ 

1 

n 

n ∑ 

i =1 

[ (
x i,t − ˆ x i,t 

)2 + 

(
y i,t − ˆ y i,t 

)2 
] 

(25)

where ˆ x i,t denotes the estimate position of actual location x i,t , n denotes the number of sampling points, i denotes the

number of wireless nodes ( i = 1, 2, 3), and t is the time moment of measure with the maximum value of 150. 

In this paper, we use the interior point method which is built in the fmincon() function group of MATLAB optimization

tools to solve the nonlinear inequality constraint problem in Eq. (16) . The processor we used is Inter(R) Core(TM) i7-8750H

CPU of 2.20GHz. The memory (RAM) is 16GB, simulation experimental platform is MATLAB. The performance of NIC-UKF
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Fig. 6. (a) Experiment results of RMSE (b) Experiment results of time overhead. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

is compared with the existing algorithms, such as UKF in [11] , EKF in [9] , KF in [13] , the updated Maximum A Posteriori

(uMAP) and the updated Kalman Filter (uKF) in [14] , and PF in [12] . The experiment results of the average RMSE is shown

in Fig. 6 (a). The experiment results of the running time is shown in Fig. 6 (b). 

From Fig. 6 (a), we can observe that the performance of UKF and EKF is mostly better than that of uMAP, uKF and KF.

Although uMAP, uKF and KF use the linearization techniques to solve the problem of nonlinear problems, those algorithms

ignore the impact of high-order mean and covariance for any nonlinearity. From Fig. 6 (a), we see UKF and EKF suffer from

significant performance deterioration at the beginning phase of the experiments, but NIC-UKF has a good performance at

the beginning phase. It is because we introduce the additional nonlinear inequality constraints, and solve the problem of

filtering divergence in UKF and EKF. With the increase of running time, the localization accuracy of most algorithms also

increases. It is because most filtering algorithms are based on iterative computation, and the number of iterations affects

the filtering performance. Fig. 6 (a) shows NIC-UKF has the best stability and fast convergence time. 

In Fig. 6 (b), we can observe that PF has the longest running time. PF uses a number of particles, which increases com-

putational complexity. Note that NIC-UKF has the second longest running time. It is because NIC-UKF needs to modify the

value of ˆ x i,t by nonlinear inequality constraints to achieve the effect of constraint optimization in each iteration after UKF.

Although it costs a little longer running time, it is acceptable to use NIC-UKF. We can deploy a mobile base station with

powerful computing power or upload the collecting data to a cloud server to improve the computing speed because the

volumn of collecting data are small. 

5.2. Reality experiment 

In this experiment, we deployed eight wireless sensor nodes in the campus of University of Technology Sydney. In order

to measure in a normal manner, we chose forty measurement positions with uniform space on the road. During a round

measurement, the five nodes with the nearest spherical distance from the base station were measured. At the same time,

nodes were deployed at different locations with different density to verify the localization results in the actual environment.

We measured the actual RSSI values in NLOS environment to avoid interference from obstacles. The scenario of RSSI measure

is shown in Fig. 7 . 

We apply nonlinear inequality constrains in Eq. (19) to restrict the perturbation under the impact of NLOS. In this ex-

periment, the locations of the wireless nodes and the marked points (Points whose positions are known in advance) are

known. We add some positive errors with Gaussian distribution to the actual RSSI values. The standard deviation of RSSI

noise power is 9dBm. After being processed by the interior point method in Eq. (19) , we can get the results of revised RSSI

values. In Fig. 8 (a), the revised RSSI values are compared with the values of actual RSSI and the RSSI with errors. We com-

pute the estimated distance between each marked point and the corresponding sensor nodes by using the log-distance path

loss model. The parameters of Eq. (2) are listed in Table 1 in Section 5.1 . The estimated distance of actual RSSI, RSSI with

errors and revised RSSI are shown in Fig. 8 (b) respectively. 

From Fig. 8 (a), we can observe that the polyline of revised RSSI fits well with that of actual RSSI. That is to say, NIC-

UKF can effectively eliminate NLOS errors. However, we can observe that there are inaccuracy prediction values in marked

points 7, 13, 26 and 36. In addition, those marked points appear on vertexes of polylines. In other words, the performance

of NIC-UKF will decline in the moments of RSS fluctuation. It is because of the incorrectly prediction of the ranging model

when RSS fluctuates. One way to solve RSS fluctuation is to use smoothing filtering to take into account the values around

the RSSI values measured at a certain time. 
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Fig. 7. The scenario of RSSI measure. 

Fig. 8. (a) Comparison of RSSI values (b) Comparison of estimated distance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Fig. 8 (b), we can observe that there is an obvious misestimation of distance in the marked point 26. The value of

actual RSSI is -112dBm, while the value of RSSI with errors is -131dBm respectively. Eventually, the estimated distance of

actual RSSI is 347.34m, but the estimated distance of RSSI with errors is 1140.42m. It is because the estimated distance

has the exponential relation with the signal strength in the log-distance path loss model. A little error will cause a serious

misestimation. Therefore, it is necessary to add constraints with the filtering approaches. Furthermore, we can predict the

locations of obstacles based on the estimated distance. If there is a serious error of estimated distance, we can draw a

conclusion that there are obstacles within line of sight propagation. 

6. Conclusions and future work 

In this paper, a nonlinear inequality constrained-unscented Kalman filter method is provided to address the localization

problem of wireless nodes under the non-line of sight. The contributions of this paper include it introduces the angle and

distance constraints to the unscented Kalman filter, and improves the convergence speed and localization accuracy with

acceptable computation consumption. The nonlinear inequality constrained-unscented Kalman filter method includes four

phases, i.e., the initialization phase, the unscented transformation phase, the prediction phase, and the update phase. The

idea of the nonlinear inequality constrained-unscented Kalman filter method is to remove the interference of noise through

the observation and prediction of its positions and the received signals during the base station motion. We can obtain the

signal strength without interference in the update phase. After that, the real distance of wireless nodes can be calculated

according to the signal propagation model. The nonlinear inequality constrained-unscented Kalman filter method is suitable

for the localization of wireless nodes based on angles of arrival and received signal strength indications under the non-line

of sight when a base station is in the linear motion or the curvilinear motion. 
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In the simulation experiment, we compared the localization accuracy and calculation time overhead between the non-

linear inequality constrained-unscented Kalman filter and the extended Kalman filter, the unscented Kalman filter, the par-

ticle filter, the updated maximum a posteriori, the updated Kalman filter and the Kalman filter. The experimental results

show that the nonlinear inequality constrained-unscented Kalman filter has the advantages of faster convergence speed,

high localization accuracy, better stability, and acceptable running time. In the real experiment, we evaluate the effect of

the nonlinear inequality constrained-unscented Kalman filter on noise filtering, and the experimental results show that the

nonlinear inequality constrained-unscented Kalman filter has good noise filtering effect, and can be used to localize the

positions of wireless nodes accurately. 

In the future work, we will consider the energy optimization during signal collection in order to reduce the energy

consumption of the mobile base station. 
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