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Abstract—Energy-harvested  Wireless Sensor  Networks
(WSNs) may operate perpetually with extra energy supply from
natural energy, such as solar energy. Nevertheless, harvested
energy is often too limited to support perpetual network
operation with full duty cycle. To achieve perpetual network
operation and process the data with high importance, measured
by Value of Information (Vol), sensor nodes have to operate
under partial duty cycle and to improve the efficiency of
harvested energy. A challenging problem is how to deal with
the stochastic feature of natural energy and variable data
Vol. We consider the energy consumption during the energy
storage and the diversity of the data process including sampling,
transmitting and receiving, which consume different power
levels. The problem is then mapped as a budget-dynamic
Multi-Arm Bandit (MAB) problem by treating harvested energy
as budget and the data process as arm pulling. This paper
proposes an Opportunistic Duty Cycling (ODC) scheme to
improve the energy efficiency while satisfying perpetual network
operation. ODC chooses some proper opportunities to store
harvested energy or to spend it on the data process based
on historical information of energy harvesting and Vol of
the processed data. With this scheme, each sensor node only
needs to estimate ambient natural energy in short term so
as to reduce computation cost and storage capacity for the
historical information. It then can adjust its own duty cycle
distributively with its local historical information. This paper
conducts extensive theoretical analysis for the performance of
our scheme ODC on the regret, which is the difference between
the optimal scheme and ours. Our experimental results also
manifest the promising performance of ODC.

Index Terms—Opportunistic Duty-cycling; Energy Harvesting;
Wireless Sensor Networks; Multi-armed Budget

I. INTRODUCTION

As a promising technique, the great success of Wireless
Sensor Networks (WSNs) has been witnessed over a variety
of critical applications in recent years [1][2][3]. One common
constraint, impeding the wider application of this kind of
networks, is the limited energy supply. To extend network
life or even to support perpetual network operation, two
major techniques have been severally applied to WSNs: energy
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harvesting [2][4] and duty cycling [5]. Energy harvesting can
supply sensor nodes with extra power from natural energy
while the duty cycling technique can save energy so as to
extend network lifetime. But most tiny energy-harvesting mod-
ules in solar sensor networks cannot harvest enough energy to
support full duty cycle operation [2]. Some existing works
combine the two techniques to achieve permanent network
operation, i.e., to meet the energy neutral operation [6][7].
These existing works estimate the amount of active time in
a period previously, such as at the initialization phase of the
period [4][7], or the average amount of active time for some
periods over a long duration, such as a season [3]. However,
there are several facts ignored by the existing works.

1) Imperfect charge efficiency. In practice, the charge ef-
ficiency of rechargeable battery in the solar powered sensor
node is often less than 75% [8], which means that it indirectly
wastes 25% energy to store harvested energy. Another choice,
capacitor, suffers high leakage [9].

2) Variable data importance. In WSNs, the data redundancy
is a common phenomenon. Meanwhile, if introducing the
concept of Value of Information (Vol), the more important
data has higher Vol. It can obtain higher energy efficiency to
process the more important data.

3) Random natural energy. Some natural energy, such as
solar or wind power, is shown to be random [2][10], so as
hard to predict their profiles for long term accurately because
of unpredictable weather and disturbance.

Section II illustrates some detailed technical evidences and
examples to illustrate above observations. We find that it is still
an open problem to improve the efficiency to exploit natural
energy.

Notice that the energy consumption caused by imperfect
charge efficiency can be decreased if harvested energy is
directly used rather than stored in the battery. Considering
data Vol, a sensor node can arrange right moments to process
important data and to sleep so as to improve the energy
efficiency, which is defined as the average Vol obtained per
unit energy consumption in this paper. To do this, we propose
an Opportunistic Duty Cycling (ODC) scheme to catch some
features: the dynamic profile of harvested energy, the variable
data VoI , and the easiness to estimate the harvested energy
in short term. In this paper, the data process includes three
actions: data sampling, transmitting and receiving, which
consume different power so they have much impact on the
energy efficiency. We then map the opportunistic duty cycling
as a gambling game: Multi-Arm Bandit (MAB) [11]. In this
game, a sensor node is treated as a gambler. The gambler
decides its next action (sampling, receiving, transmitting or



storing energy) step by step based on its estimation for natural
energy and data Vol in the subsequent time.

In the real applications of energy-harvested WSNs, the data
process and energy harvesting are highly dynamic. Under the
MAB game, each sensor node can determine its next action
according to its historical information in short term so as to
deal with the dynamic feature. The goal of the gambling game
is to maximize the energy efficiency for each sensor node.
Clearly, in order to achieve this goal, each sensor node should
carefully decide its next action while adhering to the energy
constraint. Notice that to meet the energy neutral operation
and to improve the energy efficiency usually contradict to each
other when adjusting duty cycle. The former goal requires each
sensor node to short its duty cycle while the later requires
longer one to obtain the overall Vol as much as possible. To
achieve the bi-criteria object, this paper adjusts a Vol threshold
according to historical information.

Contributions. The contributions of this paper include:

1) This paper adjusts duty cycle by considering imperfect
charge efficiency and data Vol while meeting the energy
neutral operation. We map the new duty cycling problem as
the budget-dynamic MAB problem. To our best knowledge,
this is the first work to formulate and study the problem.

2) This paper designs ODC scheme to achieve the bi-
criteria object. With ODC, each sensor node can distributively
determine the action for the next time slot by playing the MAB
game under the constraint of limited and dynamic harvested
energy. An algorithm, called ODC, is designed to implement
the ODC scheme. We theoretically analyze the performance
of ODC by measuring a regret, the difference between the
optimal scheme and ODC.

3) Extensive experiments are also conducted to evaluate
the performance of our scheme. In the experiments, because
of the hardness to find the optimal scheme, we propose two
baseline approaches: a Centralized and Off-line duty cycling
Algorithm (COA), and a Simple Duty Cycling (SDC). COA
has the complete knowledge of the natural energy and the data
VoI in advance. SDC predicts natural energy and calculates
the duty cycle in advance as the algorithm given in the
reference [4]. The experimental results show that the average
energy efficiency achieved by our scheme is only 16.02%
lower than that of COA, and 69.09% higher than that of SDC.

Road map. The following context of the paper is organized
as follows. Section II describes the motivation based on our
preliminary experiments, and formulates the opportunistic duty
cycling problem in Section III. The problem is mapped as
the budget-dynamic MAB problem, and ODC is presented in
Section IV with its performance analysis in Section V, while
the experimental results are discussed in Section VI. In Section
VII, we review the related works on the energy harvesting
module and the duty cycling schemes for WSNs and conclude
this paper in Section VIIL

II. PRELIMINARY EXPERIMENTS AND MOTIVATION

This work is motivated by the following observations.
Firstly, the inherent hardware property of the energy harvesting
module leads to time varying charge efficiency. In practice,
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(b) Energy harvested by three sensor nodes in one day

Fig. 1. Current indicates the amount of the harvested energy. (a) Energy
profile changes with time. (b) Different sensor nodes have different profiles
in one day.

the average charge efficiency of the battery for the solar
powered sensor node is often less than 75% [8]. Secondly,
the random environmental factors, such as the shadow of
clouds, can also decrease the charge efficiency. Thirdly, the
data Vol varies over time and is different among the nodes.
These observations leave the existing duty cycling schemes
unsuitable, and motivate us to design a new duty cycling
scheme.

A. Dynamic Energy Harvesting and Storage

The unpredictable environmental factors lead to diverse
energy profiles among sensor nodes as examples in Figure 1.
The experiment results in Figure 1(a) indicate that the same
sensor node usually has different energy profiles in several
days even under the similar weather conditions. More so, the
energy profiles for several different sensor nodes vary a lot
during the same day because of their different locations as
shown in Figure 1(b). Similar phenomenon was also observed
in previous works [9]. Some works model the solar energy
harvesting as a first-Markov random process [10].

The time to consume or store harvested energy has great
impact on the energy efficiency. Due to imperfect charge
efficiency, denoted by A, the relation between the harvested
energy e” and the actual stored energy e® is e® = Mel
for the charge efficiency A < 0.75. The solar panels on
the most existing solar modules, such as SolarMote [2] and
Prometheus [4], have the rated current of about 20 mA.
Meanwhile, the working current of the existing sensor nodes,
such as TelosB, is 20 mA for receiving and 19 mA or more
for transmission. If a sensor node powers its antenna with the
harvested energy (20 mA) directly, then its antenna can work
normally. Otherwise, if it stores the harvested energy with the
power 20 mA, the actual stored energy is 20x0.75=15 mA
given A = 0.75, which means that 5 mA harvested energy
is wasted. The power of the stored energy is thus too low
to support its normal operation. Notice that this paper uses
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Fig. 2. Data process is reduced
greatly while a little VoI is lost.

Fig. 3. Example for different data
process choice.

the electric current to measure the power since the fault rated
voltage for the existing sensor nodes is constant, such as 3 V
for the TelosB and MICA nodes.

B. VoI of Data

The limited harvested energy compels each sensor node to
preferentially process the data with high Vol. According to
Information Theory, the data importance can be indicated by
VoI, denoted by I [12]. The Kullback-Leibler (KL) divergence
measure can calculate Vol by qualifying the difference be-
tween two probability distributions: p; (¢) and pa(t) as follows.

I (pr(), pa(t)) = / pi(t)log ;Eii

With the concept of Vol, a sensor node chooses the important
data (i.e. with high Vol) to process. The times to process
data then can be decreased so as to save much energy while
preserving the overall Vol. For example, when reducing the
times to sample the luminous intensity from Figure 1(b) to
Figure 2, about 92% energy is saved while the overall Vol
lose is preserved under 5%.

D

C. Call for Online Energy Allocation

Since both of the data process and energy harvesting are
random processes, each sensor node can make online decision
to allocate the harvested energy. The example in Figure 3
illustrates the necessity of the online energy allocation to
maximize the overall Vol by carefully scheduling the energy
consumption. In this example, the sensor node v; can harvest
20 mA energy at the time slots marked with “white” color solar
status, and cannot harvest energy at the “black™ time slots.
Suppose that v; requires at least 20 mA energy to support
its normal operation at each time slot, and that the charge
efficiency A = 0.75. When time ¢ goes to 73, v; can use the
harvested 20 mA energy directly to process the first data with
20 unit Vol. After ¢ goes to 73, v; has two choices. The first
choice is that v; uses the harvested energy at 73 to process the
second data, and then obtains 10 unit Vol. At 74, v; stores the
harvested 20 mA energy, and obtains 15 mA energy because
A = 0.75. At 75, v; cannot process data since the stored energy
is not sufficient. The Vol per unit energy that v; obtained by
the first choice is 381%8 = 0.75. The second choice is that v;
stores the 40 mA energy harvested at 73 and 74 and obtains
30 mA energy. It then processes the second data at 75, and
obtains 50 unit Vol. The Vol per unit energy that v; obtained
by the second choice is 35t35 = 1.4. Obviously, the second
choice can result in higher energy efficiency, i.e., the Vol per
unit energy, than the first one.

D. Opportunistic Duty Cycling

From the above facts, we find that the processes of the
data process and energy harvesting are highly dynamic. It
can greatly improve the energy efficiency to wake up the
sensor node to process data and to hibernate them for storing
energy at proper moments. These facts motivate us to propose
the novel opportunistic duty cycling scheme, under which
the sensor nodes can catch the right opportunities to process
data or to store the harvested energy. Existing works on duty
cycling adjust only the amount of active time in a period as
shown in Figure 4. Under the opportunistic duty cycling, the
active slots are also considered as the example in Figure 5,
where the period composes of 8 slots. The set of active slots
may be different as the cases a and b in Figure 5 although
the duty cycles under both cases are same, i.e., %. The reason
to adjust the duty cycle in this way is that they may result in
different energy efficiency. The goal of the opportunistic duty
cycle is to adjust the duty cycle and to arrange the active time
slots so that the energy efficiency can be improved under the
constraint of the energy neutral operation.
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Fig. 5. Opportunistic duty cycling.

Most symbols used in this paper are summarized in Table I.

TABLE I
SYMBOL AND MEANING
Sym. Description Sym. | Description
T Period a Arm of bandit machine
v Node v # of pulling all arms
s Set of slots © # of pulling one arm
K # of arms 1 Reward/Vol
X Pull variable I Estimation of [
L Route Iy Threshold of Vol
A Reward difference I Upper-bound of Vol
R Regret p Probability
X Scheme c Cost/Energy consumption
0 Solar state e Energy processed in slot 7
A Charge efficiency E Energy processed till slot 7
E Expectation M Vol of remaining data
«a, B,y | Coefficients A, B | Coefficient vectors

III. SYSTEM MODEL AND PROBLEM FORMULATION
A. Network and Energy Model

Given a network with a sink and some sensor nodes v;,
i=1,2,---, each node is assumed to have at least one stable
route connecting with the sink. A period 7' composes of |T'|
time slots 7;, ¢ = 1,---,|T|. Each node is equipped with
a micro-scale energy-harvesting module, and cannot receive
and transmit data at same time because of its half-duplex
antenna. It is equipped with one battery to store energy with
the initial energy level eg. Because of the limited hardware, the
battery cannot support the operation of the sensor node when
it is being charged by harvested energy [2][9]. Meanwhile,



the power of the micro-solar panel is too low to support the
normal operation of the sensor node and its battery charging
simultaneously in most time as the experimental result in
Figure 1. We thus assume that the limited harvested power
cannot support the normal operation of the sensor and antenna
simultaneously.

For each sensor node wv;, the different power levels are
required to support data sampling, receiving, transmitting and
storing the harvested energy, respectively denoted by c*, ¢",
¢t and ¢J. ¢® and ¢" are constant and same over all sensor
nodes. The VoI, denoted by I,(7), is measured by Equation (1).
Denote the amount of energy harvested by a single sensor node
at time slot 7 by e”(7). The harvested energy e*(7), 7 € T,
over a period can be modelled as the first-order stationary
Markov process [10]. The data arrived over a sequence time
slots is assumed to be a Markov process. Each solar panel can
support its node’s normal operation or can charge its node’s
battery if and only if its harvested energy is over a threshold
e:. Let 6 = 1 if the power of harvested energy is over the
threshold, and O otherwise.

B. Opportunistic Duty Cycling Problem

The opportunistic duty cycling can be formalized as the
optimization problem. The goal of ODC is to maximize the
overall VoI collected at the sink as given in Equation (2), while
satisfying the energy neutral operation under the constraint of
the energy harvesting randomness in Equation (3).

max > Lyink(T) )
TeT

where I, (7) denotes the Vol received by the sink at 7.
At the time slots in the sets s°, s” and s?, the sensor node
v; samples, receives and transmits data respectively. At the
time slots in the set s9, v; stores the harvested energy into its
battery and thus 6 = 1 at every slot in sY. To meet the energy
neutral operation, the consumed energy should be less than
the harvested.

[°[c® + [s"ct + [s"|e + [s7]cf < S el(r) ()
TeT

According to the assumption in the subsection III-A, the
antenna is half-duplex so the sets s”, s’ has no common
element. Meanwhile, the four sets: s9, s°, s”, and s’ have
no common clement because of the limited hardware and
harvested energy as the assumption in Section III-A. The four

sets thus satisfy the following condition.

sfUsUs Ust =T
s"Ns'!=@;and s" Ns* =@;and s'Ns* =@  (4)
s9Ns*Us Ust =@

The core of ODC scheme is to find these four subsets: s°, s",

st and s9, so as to solve the optimal problem in Equation (2)
under the constraint in Equation (3) and (4).

IV. OPPORTUNISTIC DUTY CYCLING

This section formulates the opportunistic duty cycling as
the budget-dynamic MAB problem [13], and then presents our
duty cycling scheme: ODC.

Harvesting ay

Receiving Transmitting

Duty

cycling *
T
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Fig. 6. (a) Node v; has four actions: sampling, receiving, transmitting and
storing. (b) Mapping v; to a gambler with four arms, a1, a2, a3z and a4. Four
actions become four arms respectively after mapping a node to a gambler.

A. Budget-dynamic MAB Problem

Let us look into the detailed process of the opportunistic
duty cycling in energy-harvested WSNs. For the harvested
energy, each node has two ways to deal with it: consuming or
storing it. To store it results some energy consumption because
of imperfect charge efficiency, i.e., A < 1. Otherwise, it spends
the harvested energy on data process. When no energy to
harvest, it must consume its battery power on data process,
or sleep so as to lose the chance to process data. Obviously,
each node has to choose one of the four actions: sampling,
receiving, transmitting data and storing energy (i.e. sleeping),
as shown in Figure 6(a), by consuming the harvested or stored
energy at each time slot. To maximize the energy efficiency,
each node need choose the best action by learning its historical
information of the energy harvesting and data process. Since
the energy harvesting and data process are the Markov process,
the conditional probability (given the historical information)
that the harvested energy and Vol of the data are at certain
levels at the beginning of slot 7 is a sufficient statistic for the
design of the optimal actions in the slot 7 [14]. Each node
thus need not record the long historical information, and can
estimate Vol for next time slot by counting the probability
that the power and data Vol are at certain levels during the
previous time slots in short term.

If treating a sensor node as a gambler, the harvested
energy is the budget of the gambler and its four actions
represent the four arms of the bandit machine as shown in
Figure 6, the opportunistic duty cycling can be formulated as
the budget-dynamic MAB problem. Pulling the arms ai, ao,
as and a4 represents the four actions: data receiving, sampling,
transmitting and energy storing. In the MAB problem, the
gambler pulls one of the bandit machine’s arms by costing
some budget. The bandit machine then returns it with some
reward each time. For simplicity, we take the Vol of the
processed data as the reward. For example, a sensor node
receives a data, whose Vol is I, and then the reward is I.
The goal of the gambler is to maximize the overall reward
under its budget constraint by a series of arm pullings. In this
paper, the harvested energy, i.e. the budget, is dynamic, so the
problem studied in this paper is a new variation of the classical
stochastic MAB problem: the budget-dynamic MAB problem.
By mapping the opportunistic duty cycling problem to the
MAB problem, the goal to maximize the energy efficiency
is equivalent to maximizing the reward given dynamic and
limited budget.

Since a sensor node is treated as a gambler in the MAB



problem, it means that the solution to the problem is im-
plemented distributively. A challenge to solve the problem
is to prove the distributive scheme can guarantee the global
maximization of the overall Vol. Notice that all data received
by the sink is sent by each single node. Thus, a straightforward
idea is to maximize the Vol of each single node. To support
the idea, the following context considers a more general
case than that given in Equation (4). Notice that the case in
Equation (4) is covered by the following statements. Denote
the Vol obtained by the three actions: sampling, receiving and
transmission, by I°, I" and I* respectively. Let M (7) denote
the overall Vol of the data remaining in v;’s memory till the
end of time slot 7. Recall that each node cannot receive and
transmit data simultaneously as the constraint in Equation (4).
‘When the node takes the action to transmit data in 7, there is
a balance that is M (7)=M (1 — 1)+I%(7)—1I*(7) at time slot
7, where I°(7) is the VoI of the sampled data at the slot 7.
We have the following equation:

I'(r) = M(1 —1) — M(7) + I*(7) 5)

Similarly, we have the following updating equation when the
node takes the receiving action.

Mr)=I"r—-1)+ M(r—-1)+I°(tr—1) (6)

where I"(7 — 1) and I*(7 — 1) are the Vol of received and
sampled data at time slot 7 — 1 respectively. They may be zero
since the action: data transmitting or energy storing, may be
taken. Considering the special case that only one of the four
items: I*(7), I°(7), I"(7) and I*(7) can be the value over
zero, Equation (5) and (6) satisfy the constraints in Equation
(4). Tt meas that the situation given in Equation (4) is a special
case of the following statement.

Recall that each node has at least one routing connecting
with the sink as the statement in Section III-A. Let I,
denote the set of nodes that are k hops away from the sink,

k=1,2,---. The overall reward of the whole network can be
calculated as Y Isynk(7) = > Y. If(7) in the period
TeT TeT v; et

T, where I!(7) is the Vol of the data transmitted by the
node v; at the time slot 7. The following theorem proves
that > Is;ni(7) can be maximized by maximizing the overall

rewa;(eiTof each single node. This paper decomposes the overall
reward of the sink to that of each node by the following
theorem.

Theorem 1: Assume each node has at least one route
connecting with the sink. The total reward of all nodes
accumulated in a period equals to the total reward received
by the sink in the period.

Proof: The intuitive idea of the proof is that all of the
data received by the sink must be sent or relayed by the
intermediate nodes in the network. Let vy denote the sink, and
suppose that the network starts at the time slot 7 = 0. When
7 = 0, i.e., the network does not begin to run, each node v;
does not receive or sample any data so M;(m; = 0) = 0. In
an arbitrary time slot 7 > 0, the Vol of the data received by

the sink is that the relay node v; € Ly transmits at the same

slot. That is
> L)
’UieLl

Isink (T) =

Thus, to maximize I, (7) is equivalent to maximizing the
data traffic of each node away one-hop from the sink at time
slot 7. According to Equation (5), the right side of the above
equation can be rewritten as follows:

I{(1) = Mi(r = 1) = Mi(7) + I} (7),v; €t1 (D)

Notice that any data sampled or received at time slot 7 can
be transmitted after 7. The transmitted data I} (7) must come
from the remaining data M; (7 —1). The last two items M;(7)
and I*(7) have no contribution to I!(7). Before the time slot
7, v; (v; € L) must receive or sample data and store it in
M (7t — 1). Otherwise, it has no data to transmit in 7. The
data that the sensor node chooses to transmit at time slot 7
must be received or sampled at some earlier time slot 7/, i.e.,
7' < 7. When the sensor node transmits the data in 7, the
time 7 — 1 or 7/ (7' < 7 — 1) at which the data is received or
sampled has no affection on the transmission of the data. To
understand the proof easily, we can assume that the data that
the sensor node chooses to transmit at time slot 7 is received
or sampled at 7 — 1. Meanwhile, the data received by the
sensor nodes in the layer L; must be transmitted by those in
the layer L1 so we have the following equation:

Yorin= > I ©)
vieky ’UjGLk+1

According to Equation (6) and (7), the Vol of the data received
by the sink till time slot 7 is:

Link(r) = > IH(r)= > [Mi(r — 1) = M;(r) + I} (7)]

viELl v{,GLl
= > Mi(r—1)= > [Mi(r) +I;(7)]
vieby vieby
T—1 T
=S to+Y. Y e - Y Min) ©)
t=0 4, ek, t=04,¢et,; vieby

In the last equality of the above equation, the first item is the
sum of the traffic of the sensor nodes in the layer Ly, which
contributes to the Vol of the data received by the sink, i.e.,
Isink(7) at time slot 7 — 1. In other words, the VoI of each
sensor node v; € Lo must be maximized at 7 — 1 before the
overall VoI I,k (7) can be maximized at time slot 7 since
the last two items have no contribution to I,k (7) in 7 — 1
according to the statement below Equation (7).

Similarly, we can deduce Ig;,,(7) in Equation (9) back to
the sum of the VoI of the data transmitted by the sensor nodes
in the layer Lj during time slot 7 — k + 1. Therefore, the
overall VoI of the sink in the period T, i.e. Ef Isink(7), can
be maximized by maximizing the VoI of the data transmitted
by each sensor node in each layer over a series of time slot
T, TeT. [ |



B. ODC

This block presents the detailed design of our scheme: ODC.
In order to achieve the energy neutral operation, a parameter
14, called Vol threshold, is introduced to control the amount
of energy that each sensor node can consume on average.
Because of the randomness of natural energy, I; should be
updated continuously. An Adaptive Vol Adjustment (AVA)
algorithm is designed to update the threshold I in this paper.

1) ODC algorithm: Recall that the goal of ODC is to
maximize the Vol of each sensor node, i.e. to solve the
budget-dynamic MAB problem, so that the overall Vol can
be maximized according to Theorem 1. Imagine that taking
an action corresponds to placing an item into a knapsack. The
expected reward by taking the action equals to the item’s value
and the energy consumption for the action is the item’s weight.
The total harvested energy till 7 is then the weight capacity
of the knapsack at 7. Therefore, the budget-dynamic MAB
can be reduced to the unbounded knapsack problem at each
time slot 7. We borrow the idea of the density-ordered greedy
algorithm [15] to solve the problem.

During solving the budget-dynamic MAB problem by the
density-ordered greedy algorithm, the key step is to estimate
the Vol that each action will obtain at the next time slot
7, so that the sensor node v; can take those actions with
the highest energy efficiency. Auer introduced the Upper
Confidence Bound (UCB) to calculate the estimated Vol of
each action [16]. The most popular UCB, called UCB-1, relies
on the upper-bound Vol I 7(1) + &5() obtained by taking
the action a;, where d’(7) is a padding function. A standard
e In¥(r)

the upper-bound on the reward/Vol, ¢’ > O%ié Zm appropriate
constant. ¢;(7) is the number of taking action a; till 7. ¥(r) is
the overall number of actions that the sensor node v; has taken
till 7, and I%(7) is the estimation of the action a;’s expected
reward for the slot 7 at the end of the slot 7 — 1. In order to
improve the energy efficiency, the upper-bound Vol per unit
cost can be calculated as I;(7) + 6;(7) = (I}(7) + 55(7))/c;
by taking the cost ¢; into consideration. We have I;(7) =
Ii(7)/c; and 6;(7) = I %(\P()T) where £; = &’/c?. Notice
that the remaining energy E(7) till time slot 7 composes
of the energy remained in its battery F(7) and possibly
harvested energy at 7, i.e., E(T) = E(t — 1) + 0(1)e" (7).
Thus, the unbounded knapsack problem can be formulated as
the following problem with the time-dependent energy bound
E(T).

maXZXJ
s.t. ZXJ

where x;(7) is a bool indicator. x;(7) = 1 if the action a; is
taken at 7, and O otherwise. c¢; is the energy consumption to
pull the arm a; once. The constraint in Equation (11) means
that the energy consumption at time slot 7 is constrained by

expression of the function is ¢}(7) = I , where 1 is

T)+¢5) (10)

(1), V4,7 x;(r) € {0, 1} (1)

E(7). I;(7) can be calculated as the average reward received
by pulling arm a; till 7 — 1.

jj (7’) — 2_: Xj (t)lj (t)

t=1 CJSDJ(T - 1) (12)

The problem defined in Equation (10) is NP-hard so this paper
uses the density-ordered greedy method [15] to find a near-
optimal selection of the sets s, st and s", i.e. to find the
integer x;(7) so that Equation (10) is maximized (see step 12
in Algorithm 1).

The memory capacity of a sensor node is limited. Each
sensor node thus should keep balance between its output:
the transmitted data and its input: the received and sampled
data in the long term. In other words, the times to pull the
arm ag is expected to equal to the sum of the times to pull
the arms a; and as. To do this, we assign each action with
some probability. Let xj(7) be the solution to the problem
in Equation (10) by the density-ordered greedy method at
the time slot 7. ODC takes the next action a(7) with some
probability, which is determined by the following equation
(see step 13 in Algorithm 1).

K
I XT),  i=1,2
pla(r) = a;) = = (13)
2 (1)) > X;(r),  j=3

where K is the number of the arms of the bandit machine.
Notice that the arm with the higher upper bound Vol will have
higher probability in Equation (13) since the times that it is
pulled is higher than others. ODC is presented in Algorithm 1,
and its performance will be theoretically analyzed on its regret
bound in the next section. In this algorithm, ¢(7) is the energy
consumed at time slot 7. For example, if the arm a; is pulled
and the consumed energy is ¢; in 7, then ¢(7) = ¢;.

2) AVA: The intuitive idea behind AVA is that each sensor
node dynamically estimates the Vol threshold for the next
time slot according to the harvested energy and the consumed
energy in the previous time slots. The energy neutral operation
condition requires each sensor node to consume energy less
than the remaining one, ie. E"(7) > E°(r), while the
sensor node v; has to consume energy as much as possible to
maximize the total reward in the period. The best choice is to
keep the balance between the harvested and consumed energy
in a period, i.e. E"(T) = E¢(T), where EM(T) = 3 el(7)

TET
and E¢(T) = Y (7). We define the following func%ion as a

TeT
metric to find the balance point.
(14)

Denote the Vol threshold updated at 7 by I;(7). A proper
I,4(7) ensures that each sensor node can minimize the average
squared deviation of the harvested energy from the consumed
energy by Equation (14). To find the proper I;, we adopt
the adaptive control theory in Algorithm 2, transforming the



Algorithm 1 The ODC Algorithm
Input: ¢(1) = 0 and I4(1) = I(1) = 0;
Output: A sequence of actions;

1: Initialize: 7 =0 and E(7) = eg;
2: while 7+ =1, and 7 < |T| do
3:  Update the remaining energy F(7) till 7;
4. TInput €"(7) and ¢(7) into Algorithm 2 to update I;(7+
1);
5. if j(T) < I4(7) then
: Pull arm a4 to store energy;
7: E(1) = E(t — 1) + M(7)e"(7), and go to the step

s

8: end if
. if 7 < K then
10: Initial phase: pull the arms a;, ¢ = 1,2, 3 one by one;
11:  else
12: Calculate x;(7) by solving the knapsack problem in
Equation (10);
13: Take the action a;(7) with the highest probability

p(a(T) = a;) given in Equation (13);
14: E(r)=E(t—1)+ (0(1) — 1)¢;;
15:  end if
16:  Update the upper bound Vol I ; of the action a;(7);
17 Update I(7 +1) = _max KI_j(T) by Equation (12);

. aj:j=
18: end while

threshold determining problem as the linear-quadratic tracking
problem. More formally, this paper argues that a first order,
discrete-time, linear dynamical system with colored noise for
the problem. This system can be described by the following
equation:

e(t+1) =ac(r) + BLi(1) + ywr + wri1 (15)

In this system, ¢(7 + 1) is refer to the output of the system,
1, is the control. w is mean zero input noise. «, 3,7 are real-
valued coefficients. The optimal output of the system is to
keep the metric in Equation (14) as small as possible in the
period T'. The optimal control law to minimize the tracking
error is [17]:

La(r) = ["(7) = (a+ B)e(r) + 7e"(1)]/8

The coefficients «, § and  are not known in advance,
and can be estimated online in our problem by using the
standard gradient descent techniques [17]. Firstly, we define
a parameter vector A, = (a + v,3,7)T, and a feature
vector B, £ (c(7),14(1), —e"(7))T. By the two vectors, the
optimal control law in Equation (16) can be expressed as
BT A = e"(7). The estimated parameter vector A for A then
can be defined by the gradient descent update rule as given by

AT+1 = A‘r + pBr(cri1 — BTTAT)/(BfBr) a7

(16)

where i is a positive constant step-size parameter.

Because each sensor node need store its harvested energy in
its battery, the initial energy level ey would better be about half
of the battery capacity. The choice of the A,’s initial value A

greatly affects the converge speed of the parameter estimation
in Equation (17). Ay can be set preciously according to
preliminary experimental results. Examining the system in
Equation (15), the increment of the control I; results in less
data being received or sampled, so less energy consumption.
b should be negative. Set By = (cg, 15(0), —e"(7)).

Algorithm 2 AVA

Input: The harvested energy e’ (7) and the consumed energy
c(t) of v; till 7. Let 7 = 0.

Output: The updated threshold I;(T + 1).

if 7=0 t!len
A, = Ag and set By;
end if

: Update the parameter vector Ar+1 by Equation (17);
: Update the feature and parameter vectors B, A;;
: Output I;(7 + 1) using Equation (16);

AT L O R S

Considering a special case in which each sensor node can
harvest enough solar energy. Thus, the harvested energy can
support its operation at every time slot. When it cannot harvest
sufficient energy, a high threshold I;(7) prevents it from
working at every time slot, i.e. by reserving some energy at
some time slots. So the harvested energy is stored and will not
be consumed completely at every time slot, i.e., E(7) > 0.

C. Common Activity

Recall that ODC is implemented distributively so a con-
cerned issue is how about the common active time among
neighboring nodes under it. By Algorithm 1, each sensor node
chooses the transmitting and receiving arms with some prob-
ability and thus it may have common active time, i.e. simul-
taneous waking up, with others at each time slot. This section
shows the probability that one sensor node has common active
time with its neighbor theoretically and experimentally. If the
node can communicate with at least one neighbor, we say
that its common active time is nonzero. Figure 7 illustrates
the theoretical probability that some neighboring nodes have
common active time. When each node has some probability to
wake up, i.e. active probability, the common active probability
can be easily computed as the y-coordinate. More neighbors
the node has or higher probability it wakes up, it has higher
probability to communicate with its neighbor in Figure 7.
Figure 8 illustrates the experimental results when one node has
two neighbors. The experimental setting is given in Section VI.
In the experiment, the common active probability tends to
0.22, and the average data Vol obtained by each action tends to
about 0.57. In each time slot, the node can guarantee a certain
probability to communicate with its neighbors. The probability
is not quite high but the obtained Vol is not low since the
node transfer the important data. Next section analyzes that
Vol difference of the data processed by the optimal solution
and our scheme ODC.

V. PERFORMANCE ANALYSIS

This section analyzes the theoretical performance of ODC
by the metric: regret. Let Ix(E) be the total Vol returned
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by a given algorithm X under the constraint of the variable
harvested energy F in a period T'. The expectation of Ix (E) is
denoted by E[Ix (E)]. This paper always sticks the superscript
“*” to any instance that is the optimum. Suppose that X ™ is
the optimal algorithm for our problem, i.e.

X" = argm)?,xE[[X(E)] (18)
Thus, the regret Rx (F) of the algorithm X can be formally
defined as [16]:

Rx(E) = E[Ix-(E)] - E[Ix(E)] (19)
which is represented by the expectation of the arm with
the maximal reward, i.e. E[Ix-(E)] = max,;—12 3 E[[;(F)],
because of the hardness to find the optimal scheme.

Before analyzing the regret of our scheme ODC, we
introduce the Hoeffding inequality as follows:

The  Hoeffding  inequality—Let xy,---,z, be
random variables with common range [0,1] such that
Elz|x1, - ,2i—1] = p. Let S,, = 711(:61 + -+ x,). Then,
we have the probability p(S, > u + a) < e 2ma’
p(S, <p—a) < e=27%" for the constant a > 0.

Recall that the harvested energy power must be higher than
the threshold e;. It then can support the normal operation of
the sensor node. Denote by 7" the time slot set in which
the power is higher than the threshold e;. T” is determined
by the energy harvesting process, and its expectation can be
determined easily if its state transition probability is previously
known. By Algorithm 2, the Vol threshold is continuously
adjusted so each sensor node may choose to sleep (i.e. to
store the harvested energy) in some slots when the harvested
energy is higher than the threshold e;. Because of the charge
efficiency A < 1, the amount of the time slots, denoted by
|T.|, in which the harvested energy can support the normal
operation of the sensor node under Algorithm 2 must not be
higher than |7”|. Thus, we have |T,| < |T'| < |T|.

Firstly, we analyze the expected times that the arm aj,
7 = 1,2 or 3 is pulled. The arm a4 (storing energy) is not
included since it does not return any reward. This is given in
Lemma 2. We prove the following lemma based on the idea
of the reference [16] while considering the cost of each arm
¢, j=1,2,3.

Lemma 2: For an arbitrary arm aj, j = 1,2 or 3, the
expected times to be pulled in a period T satisfy:

and

(cmax)Qe’ In |T”|

E[p;(T)] < . Tf +2 (20)

where A; is the difference of the expected reward between the
optimal algorithm X™* and the arm a;. ¢per = MaXj—1 23 ¢;
an Cyin — minj=1,2,3 Cj.

Proof: Recall that the step 9 and 10 of Algorithm 1
indicates that each arm a;, j = 1,2,3, is pulled once in
the first K slots. Thus, the times to pull a; is ¢;(T,) =

T=K+1
algorithm, the selected arm has the higher upper-band Vol per

unit cost over other arms including the optimal one in each slot
7 € T,. So we have the following condition: I;(7) + &;(7) >
(1) +6°(7), e (I}(7) 4+ 85(7)) [¢; > (I (7) + 6% (7)) ).
In order to satisfy the condition with high probability, at least
one of the following inequalities must be satisfied.

(1) +6%(7) < u* 1)
Li(1) +8;(7) > uy (22)
w fe* < (uf + 85(1)) /e (23)

where u* and ug are the reward expectation of the optimal
algorithm and the arm a; by our algorithm, which is unknown
to the sensor node. u* = u* /c¢* and u; = u’;/c;. By using
the Hoeffding inequality, the probability that the inequalities
in Equation (21) and (22) are satisfied is given as follows:

p(j*(T) < uwt — 5*(7_)) < 6—4111\11(7-) _ \11(7_)—4

p(Ij(r) > uj — 6;(7)) < e *M ¥ = (7)™ (24)

Recall that ¢; > 0 and u*/, u; > 0, and then the inequality
in Equation (23) implies:

2 In¥(r)
2

cju” < c(uf +05(1)) = @i(1) < (Gu — e )?
J

g ln¥(r) .
AT zc
= (1) < J 25
#3(7) c*2e' In U(1) o 25)
(a2 9°°

where A; = u* — .
By Equation (24) and (25), the expectation of the times to
pull the arm a; thus can be given as follows:

Elo;M =1+ 3 ()

T=K+1
eV (T,) c*?'InVv(T,)
< 14 max{ , }
A? (c;45)?

+ Z {p(I"(r) < u” = 0"(7)) + p(L;(7) = u; + 6;(7))}
T=K+1

2 InU(T,) &
<1+ ——— 20 (7)~*
ORI
max Il W Ta
S(C : )25 HAQ |)+2 (as |Ta—)|OO)
Cm'ln j

(cmw )26’ In |T”|

——— +2
- Cmin A? *

(ITa < 177D (26)



where ¢4 = max min_¢; and ¢’ >

aj:j=1,2, aj:j=1,2,3

1. Notice that W(T"”) is the total number of times to pull all
arms and only one arm can be pulled in each time slot so
(T =1T"]. ]

Similarly, we can obtain that the expected times to pull the
arm ay.

Lemma 3: The expected times to pull the arm a4 in a period
T satisfy:

Cj and Cmin =

Elia(T)] < (S22 €101 @

2
Cmin A

where Ay = mm Aj.
=1,2,3

Proof: Accordlng to the step 9 of Algorithm 1, the arm
ay will be pulled when I(7) < I,(7), which means that at
least one of the following inequalities must be satisfied with
high probability.

Li(7) + 6;(1) <y,
u* et > (W — 85(r)) [ej,

By using the Hoeffding inequality, the probability that the
inequality in Equation (28) is satisfied is given as follows:

Vji=1,2,3
Vj=1,2,3

(28)
(29)

pI(r) < uj—05(r)) <e YD =w(r)~t (30)
The inequality in Equation (29) implies:
N 2" In U (7)
Ciu >c (U; - (5‘;(’1')) = @4(7’) < m
g ln¥(r) N
AT 92C
= < J 31
#a(7) 2’ In (1) ot D
(calrj)? R

According to the step 17 in Algorithm 1, the conditions given
in Equation (28) and (29) should be satisfied for all arms a;,
7 = 1,2, 3 simultaneously. Therefore, by Equation (30) and
(31), the expectation of the times to pull the arm a4 thus can
be given as follows:

Ta
Elpa(D] = D xalr)
T=K+1
enV(T,) ' In¥(T,)
< i maxt A7 (ghay)? }
T, 3
+ Y [l <uj+6;(r)
T=K+1j=1
2! ln\I/(T,,) &
< max S STy \IJ(T)716
=123 (cjA;)? T:%:H
Cmax {—:/ IH\II Ta
< (Cmin)2 Ag ) +1 (as [To = [o0)
Cmax \2 5/ In ‘T/| '
Cmaz\2€ IN[17] 1 Ta < |T 32
where a4 = min;j—i23 Aj, and £ > 1. |

Recall that the harvested energy can support the normal
operation of the sensor node in at most |7”| slots, 77 C T.

By the lemma 2 and 3, we can analyze the reward regret of
Algorithm 1.

Theorem 4. For the dynamic energy budget E(T') > 0, the
expectation of ODC’s regret is at most:

[(Cmaw )2 5/ lnigT/') +1]

Cmin
(33)
is the reward expectation

Z cmam 25 1D|T/‘+2A ]

— Cmin j
where ¢/ > 1 is a constant, and u*
of the optimal algorithm.

Proof: Algorithm 1 can operate at the time slots in the
set T,, where |T,| < |T"|. Suppose that T, = T3 U T,. In
the period Ty, the arm a;, j = 1,2,3, are pulled, and in
the period T5, the arm a4 is pulled. Suppose that the optimal
algorithm operates at the time slots in the set 7. |T™*| < |1
and |T,| < |T'| because the charge efficiency A < 1. The
reward regret of ODC is:

Ropc(E) =E[Ix«(E)] — Ellopc(E)]
T T T Ta
=EY_I"(N -EQ_IM]=EQ_I"(7)] -E[Y_I(r)
T;l . T=1 7,'1;1 T=1
= E[ (I*(1) = L + ED_(I*(7) = La(7))]
T=1 j=1 =1
T —T1—T>
+E[ ) I'(7)]
T K-1 ! T —T:
<E[ (I*(7) = L) +E[ Y (I7(7) = Lu(7))]
=1 j=1 T=1
T, K—1 T Ty
= E[ Ajp(a( NHE[ D I (7)pa(r)]
=1 j=1 T=1
T, K—1 T"—T,
=ED> Y Ajp(r)] +E[ Z I(r
T=1 j=1
K Crmaz o€ In|T"|
< 2 [(%)27Aj +24]
+ u*/[(Cmaz)QM + 1]

S 2
Cmin A4

where a(7) denotes the arm pulled at 7, and the reward of
the arm a4 is I4, which is zero since to store energy cannot
process data. This finishes the proof. [ ]

VI. EXPERIMENT RESULTS

This section depicts our experiments established on the
real data obtained from the real solar harvesting module:
SolarMote [2]. A series of experiments are designed and
implemented to validate the performance of our scheme ODC
by comparing with two baseline algorithms: COA and SDC,
which are designed because of the hardness to find the opti-
mal algorithm for the opportunistic duty cycling. The strong
assumption behind COA is that data Vol and harvested energy
can be previously known while no extra energy is consumed
on the energy storage. COA is a centralized and off-line



algorithm. Thus, the performance of COA should be closer to
the optimal algorithm than ODC and SDC. SDC predicts the
amount of the energy to harvest and then calculates duty cycle
in advance as the typical algorithm given in the reference [3].
In the following context, two scenarios: single sensor node
and a network, are established to evaluate the performance of
these algorithms. For the algorithm ODC and SDC, the charge
efficiency A = 80%. The time slot 7 is set to be 60 seconds.
The energy threshold is set to be 20 mA. All experiments in
this section are simulated on the network simulation platform
OMNeT++ 4.1 (http://www.omnetpp.org/).

A. Single Node Scenario

This subsection simulates the scenario consisting of only
one sensor node v; and the sink. v; samples data from its
surrounding, and transmits its data to the sink. The scenario
contains four experiments and is set up to evaluate the impact
of the chance to harvest energy by excluding the impact of
other factors occurring in large scale networks, such as the
packet loss. Each experiment evaluates the reward performance
of the three algorithms: COA, ODC and SDC.

In the first experiment, a certain amount 1 mAh of energy
is previously assigned in the phase from the time slots O to
10. In the second experiment, 1 mAh is divided into two
equivalent parts. One part is assigned to the phase from the
time slots 0 to 5 while the other is assigned to the phase
from the time slots 90 to 95. In the third experiment, 1 mAh
is divided into 180 units, which are uniformly and randomly
distributed into the period from the slot O to 200. In the three
experiments, there is one data available in each time slot,
and its Vol is assumed to follow the Gaussian probability
distribution with the expectation 1 and the variance 0.5. In
the fourth experiment, the data to process and the energy to
harvest are the real data collected by the energy harvesting
module SolarMote [2]: the luminous intensity and harvested
energy in the first sub-figure of Figure 1(b). Assume that there
is 20 mAh initial energy in the sensor node’s battery. The
simulations for each of the experiments are repeatedly run for
100 times so each data point in Figure 9~12 is the average
of 100 trials.

The results of the first and second experiments are respec-
tively illustrated in Figure 9 and 10. These experiment results
indicate the impact of the energy harvesting access on the total
Vol. When the energy is assigned to certain phases, the sensor
nodes tend to spend the energy timely at these phases by ODC
since some extra energy must be consumed to store the energy.
In Figure 9, the growth rate of v;’s total Vol by ODC is higher
than those of COA and SDC at the initial phase. Although
the total Vol under ODC slows down its growth in the first
experiment in Figure 9 after the initial phase, the finally total
VoI of ODC is 28.25% higher than SDC, and 28.86% lower
than that of COA. In the second experiment, the fixed energy
is assigned to two phases. During the two phases, the growth
rate of total Vol by ODC suddenly increases since the two
phases are considered to be good chance to use the energy by
ODC. The finally total Vol of ODC 34.62% higher than SDC,
and 24.02% lower that of COA as shown in Figure 10.
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Fig. 9. A certain amount of energy
is assigned to one phase.

Fig. 10. A certain amount of en-
ergy is assigned equally to two
phases.
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Fig. 12. The real data of luminous
intensity and harvested energy.

The results of the third experiment is illustrated in Figure 11.
The total VoI of all algorithms grows almost linearly with time.
Till the time slot 200, the total Vol obtained by COA, ODC
and SDC are 166.14, 143.195 and 105.509 respectively. ODC
is 16.02% lower than COA, and 35.72% higher than SDC.
Because the energy 1 mAh is distributed in the whole period
from the slot 0 to 200 uniformly, there are much more chances
that each sensor node need not store the harvested energy but
to consume it directly. The three algorithms thus can obtain
much more Vol than those in the first and second experiments.

In the fourth experiment, we adopt the real data sampled
by SolarMote [2] including the luminous intensity and the
harvested energy as shown in the first subgraph of Figure 1(b).
Thus, the data that the sensor node v; will process is the
luminous intensity. In each time slot, v; can harvest different
amount of energy and luminous intensity, and cannot know the
exact information of the luminous intensity in the future time
slots. As shown in Figure 12, the experiment results illustrate
that the finally total Vol of ODC is 18.18% lower than that of
COA, and 69.09% higher than that of SDC. Different from the
previous experiments, the accesses to harvest energy and the
data are inhomogeneous over time. Compared to the results in
the third experiment, the performance of ODC is better than
SDC. Because of the inhomogeneous accesses, ODC loses
some better chances to process the data and its performance
decreases compared to the result in the third experiment.

In the four experiments, the occasions that the sensor
node v; can harvest energy increase from one short phase
as the first experiment to multiple moments as the third
and fourth ones. In the third experiment, v; has uniformly
possibility to harvest energy at each time slot while having the
heterogeneous possibility in the fourth experiment. Through
the four experiments, we find that the distribution of the
accesses to harvest energy and to process data have much
impact on the performance of the duty cycling scheme. The
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overall performance of ODC is closer to that of the centralized
algorithm COA than SDC when the access to harvest energy
and to process data distribute more uniformly. In the four
experiments, the reward regret of ODC are given by comparing
to the performance of COA because of the hardness to find
the optimal scheme. The numerical values of the regret are
presented in the form of the percentage in the above analysis.

B. Network Scenario

The node density also has obvious impact on the perfor-
mance of these algorithms. This block simulates the network
scenario composed of several numbers of the sensor nodes
with the fixed deploy area of 100x 100 m?2. Each sensor node
runs the IEEE 802.15.4 protocol to assign wireless channel
and to deal with the interference among the sensor nodes. All
sensor nodes have the same receiving and minimal transmitting
range as far as 50 meters. Each data point represents the
average Vol when the network scale is a specific number
of sensor nodes. For example, the most left data point in
Figure 13 represents the average Vol of 50 sensor nodes. The
simulation time is set to be 200 time slots and every slot is
one minute. Two experiments are designed and implemented.
In the first one, the energy 1 mAh is assigned to each sensor
node at the initial phase from the time slot 0 to 10. In the
second one, the energy 1 mAbh is divided equally into 180 units
and distributed to the 200 time slots uniformly and randomly.
The simulation results of the two experiments are respectively
shown in Figure 13 and 14. In these figures, each data point
is the average of 10 trials.

From the results of both experiments in Figure 13 and 14,
it is easy to notice that the increase of the node density
results in the much decrease of Vol per sensor node. In the
first experiment, the average Vol under the algorithms: COA,
ODC and SDC drop 82.35%, 72.54% and 57.92% respectively
when the number of the sensor nodes increases from 50 to
1000. Similarly, the average Vol drops 82.35%, 48.95% and
43.897% respectively in the second experiment. In spite of
the Vol degression with the increasing of the node density,
the performance of ODC is over that of the SDC. The average
Vol of ODC can be 47. 01% of COA while SDC is at most
32.08% of COA in the first experiment. The average Vol of
ODC is at least 67.89% of that by COA while SDC is at most
35.96% of COA in the second experiment.

The section evaluates the performance of our algorithm
ODC by comparing with the centralized algorithm COA

and the algorithm SDC representing the typical duty cycling
scheme. The results show that the ODC has stable performance
over the existing scheme. Although its performance is not as
good as the centralized algorithm COA, ODC has acceptable
performance as a distributed online algorithm. Through the
experiments in the section, we found that the access to
process data and to harvest energy have much impact on the
performance of the duty cycling scheme, and thus the energy
efficiency. ODC shows the impact under the requirement of
the energy neutral operation, and has promising performance.

VII. RELATED WORK

This section reviews the existing energy harvesting modules
and the duty cycling schemes in energy-harvested WSNs.
Energy harvesting technique and its applications in WSNs
have been widely studied, and some modules were designed
to harvest energy [18][19][20].

Energy harvesting module. Some typical modules were
designed for sensor node to harvest solar, vibration and wind
energy [21][22][23]. Most of the existing modules can harvest
solar energy by the micro-scale photovoltaic power system.
Actually, duty cycling is still necessary in energy-harvested
WSNss because sensor nodes have no energy sufficient enough
to sustain their continuous full duty cycle operation although
they could harvest natural energy [4]. For example, the solar
panel in the module Prometheus requires at least 4 hour hard
light each day if the node’s duty cycle is 10% [4]. Some
modules were designed to store the harvested energy into their
batteries while others took capacitor as the primary buffer
and battery as the second buffer [4]. Battery suffers from low
charge efficiency and long charging duration, and capacitor
has high leakage [9]. For example, the 2000F ultra-capacitor
has high leakage rate up to 43.8% during the first month [9].

Although the sensor network can obtain natural energy
continuously, the harvested energy is not enough to support
full duty cycle. This paper notices the phenomenon and argues
to spend harvested energy on proper moments so that the
energy efficiency can be improved while each node has enough
energy to support the energy neutral operation.

Duty cycling. Duty cycling has been constantly researched
as a promising technique to improve energy efficiency and
prolong network life because of the energy limitation [5][24].
We can group the previous techniques into two classes: clas-
sical and adaptive duty cycling, according to the way under
which the networks are powered. In WSNs, the classical duty
cycling based on the preliminary assumption that each sensor
has limited energy, i.e., no extra energy is supplied [24][25]. So
the goal of the classical duty cycling is to save energy as much
as possible. In energy-harvested WSNs, each sensor node can
be supplied with extra energy continuously by some energy
harvesting modules [6][26]. Only a few works were engaged
in adjusting duty cycle according to the weather conditions in
order to achieve high energy efficiency [6][26][3]. However,
they did not consider that natural energy arrives randomly [10],
and the energy profile of each sensor node is time-varying
and different from others [9]. Furthermore, these previous
works adjusted duty cycle only by predicting the amount of



harvested energy in a duration, and did not consider the impact
of network demand and the occasion to implement the demand
on duty cycling.

Different from the previous works, this paper addresses the
duty cycling under dynamic harvested energy to avoid the
complex prediction or rough estimation of the duty cycle. We
consider the spatiotemporal dynamic of harvested energy and
our scheme ensures that each sensor node adjusts its duty cycle
according to its local information on energy harvesting and
data process.

VIII. CONCLUSION

This paper investigates the process of energy harvesting in
solar sensor networks, and finds the phenomenon that it can
greatly improve the energy efficiency of harvested energy to
catch right chance to use it. We formulate it as the budget-
dynamic MAB problem, and propose the new scheme: ODC,
to exploit the harvested energy fully while satisfying the
energy neutral operation. The theoretical performance for the
scheme are analyzed, and the experimental analysis is also
designed and implemented. We are the first to study the phe-
nomenon, and will go on studying the problem in the following
aspects. Because of the simplicity of sensor node hardware,
it needs more simple and feasible schemes. Furthermore, the
scheme of this paper involves some frequent updating for
the probability to choose arms. Our future work will reduce
the computation frequency and design even simple scheme
requiring a few frequency to update the probability. Thirdly,
the synchronization and communication coordination among
nodes are quite helpful to improve the channel utilization. In
the coming work, we will consider the coordination among
sensor nodes.
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